精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x
,g(x)=alnx,a∈R.
(1)若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值及该切线的方程;
(2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ.
分析:首先分析对于(1)已知曲线y=f(x)与曲线y=g(x)在交点处有相同的切线,求a的值及该切线的方程,考虑到求解导函数的方法,先求出交点,再根据切线相等求出a,最后由直线上一点及斜率求出直线方程即可.
对于(2)设函数h(x)=f(x)-g(x),当h(x)存在最小值时,求其最小值φ;首先解出h(x)的函数表达式,要求最值考虑到应用函数的导函数的性质,先求出h(x)的导函数h′(x),再分类讨论当a>0和a≤0时的情况求出极小值即可.
解答:解(1)已知函数f(x)=
x
,g(x)=alnx,a∈R.
则:f′(x)=
1
2
x
,g′(x)=
a
x
(x>0),
由已知曲线y=f(x)与曲线y=g(x)在交点处有相同的切线,)
故有
x
=alnx且
1
2
x
=
a
x

解得a=
e
2
,x=e2
∵两条曲线交点的坐标为(e2,e)切线的斜率为k=f′(e2)=
1
2e

所以切线的方程为y-e=
1
2e
(x-e2);
(2)由条件知h(x)=
x
-alnx(x>0),
∴h′(x)=
1
2
x
a
x
=
x
-2a
2x

(Ⅰ)当a>0时,令h′(x)=0,解得x=4a2
所以当0<x<4a2时h′(x)<0,h(x)在(0,4a2)上递减;
当x>4a2时,h′(x)>0,h(x)在(0,4a2)上递增.
所以x=4a2是h(x)在(0,+∞)上的唯一极值点,
且是极小值点,从而也是h(x)的最小值点.
所以Φ(a)=h(4a2)=2a-aln4a2=2
(Ⅱ)当a≤0时,h(x)=
x
-alnx(x>0),h(x)在(0,+∞)递增,无最小值.
综上知,h(x)的最小值Φ(a)的解析式为2a(1-ln2a)(a>0).
点评:此题主要考查利用导函数求区间极值的问题,这类综合性的题考查学生对综合知识的运用,所以学生要熟练掌握函数的基础知识.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案