分析 (1)把曲线C的极坐标方程化为直角坐标方程,可得圆心、半径,由于直线l过点(1,-1),求出该点到圆心的距离,与半径半径即可判断出位置关系;
(2)把参数方程分别化为普通方程,联立方程得到关于x的一元二次方程,利用两点间的距离公式即可得出.
解答 解:(1)∵曲线C的极坐标方程为ρ=2cosθ-4sinθ,
∴ρ2=2ρcosθ-4ρsinθ,
∴曲线C的直角坐标方程为x2+y2=2x-4y,即(x-1)2+(y+2)2=5,
∵直线l过点(1,-1),且该点到圆心的距离为$\sqrt{(1-1)^{2}+(-1+2)^{2}}$<$\sqrt{5}$,
∴直线l与曲线C相交.
(2)依题意得:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2x-4y}\\{x-y-2=0}\end{array}\right.$,
解得$\left\{\begin{array}{l}{{x}_{1}=2}\\{{y}_{1}=0}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{2}=-1}\\{{y}_{2}=-3}\end{array}\right.$,
则|AB|=$\sqrt{(-1-2)^{2}+(-3-0)^{2}}$=3$\sqrt{2}$.即|AB|=3$\sqrt{2}$.
点评 本题考查了参数方程化为普通方程、弦长公式、直线与曲线相交问题,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a-1}<\frac{1}{b}$ | B. | $\frac{1}{b}<\frac{1}{a}$ | C. | |a|>-b | D. | $\sqrt{-a}>\sqrt{-b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | (3,+∞) | C. | (2,3] | D. | (-∞,-3]∪{3} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 仅有一个 | B. | 0 | C. | 有限的(大于1个) | D. | 无穷多 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 频率是概率 | |
| B. | 随着试验次数增加,频率一般会越接近概率 | |
| C. | 频率是客观存在的与试验次数无关 | |
| D. | 随机事件的概率总是在(0,1)内 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com