精英家教网 > 高中数学 > 题目详情
8.方程(1+$\frac{1}{x}$)x+1=(1+$\frac{1}{2009}$)2009的整数解的个数是(  )
A.仅有一个B.0C.有限的(大于1个)D.无穷多

分析 根据${(1+\frac{1}{x})}^{x+1}$=${(\frac{x+1}{x})}^{x+1}$=${(\frac{y+1}{y})}^{y}$,得到当且仅当y=2009时,${(\frac{y+1}{y})}^{y}$=${(\frac{2010}{2009})}^{2009}$,从而求出x的值,得到答案.

解答 解:${(1+\frac{1}{x})}^{x+1}$=$\frac{{(x+1)}^{x+1}}{{x}^{x+1}}$,
${(1+\frac{1}{2009})}^{2009}$=$\frac{{2010}^{2009}}{{2009}^{2009}}$,
x>0,即x∈N*时,
∵$\frac{x+1}{x}$,$\frac{2010}{2009}$都是既约分数,
∴对于任意正整数,x,x+1≠20092009
故原方程无解,
x=0或-1,显然也不是方程的解,
当x<-1时,令y=-(x+1),
则${(1+\frac{1}{x})}^{x+1}$=${(\frac{x+1}{x})}^{x+1}$=${(\frac{y+1}{y})}^{y}$,
当且仅当y=2009时,${(\frac{y+1}{y})}^{y}$=${(\frac{2010}{2009})}^{2009}$,
故原方程有唯一解x=-2010,
故选:A.

点评 本题考查了根的存在性问题,考查转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.运行如图程序,则输出的结果是(  )
A.9B.11C.17D.19

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.$\frac{1+i}{{1+{i^3}}}$=i.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知曲线C的极坐标方程为ρ=2cosθ-4sinθ.以极点为原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程为$\left\{\begin{array}{l}{x=1+t}\\{y=-1+t}\end{array}\right.$(t为参数).
(1)判断直线l与曲线C的位置关系,并说明理由;
(2)若直线l和曲线C相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知定义在R上的函数y=f(x)对于任意的x都满足f(x+1)=-f(x),且当0≤x<1时,有f(x)=x,则函数g(x)=|lgx|-f(x)的零点个数为(  )
A.3B.5C.6D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知随机变量X服从正态分布N(1,σ2),且P(0<X≤1)=0.4,则且P(X<0)=(  )
A.0.4B.0.1C.0.6D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=|x2-x|-ax.
(1)当a=$\frac{1}{3}$时,求方程f(x)=0的根;
(2)当a≤-1时,求函数f(x)在[-2,3]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的一个顶点为A(2,0),离心率为$\frac{\sqrt{2}}{2}$.直线y=k(x-1)与椭圆C交于不同的两点M,N.
(1)求椭圆C的方程;  
(2)当△AMN的面积为$\frac{4\sqrt{7}}{9}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知D为△ABC的边AB上的一点,且$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ•$\overrightarrow{BC}$,则实数λ的值为(  )
A.$\frac{2}{3}$B.$-\frac{2}{3}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

同步练习册答案