| A. | P<Q | B. | P>Q | C. | P≤Q | D. | P≥Q |
分析 由基本不等式可得a12+a22≥2a1a2,a22+a32≥2a2a3,a32+a42≥2a3a4,a12+a42≥2a1a4,四个式子相加变形可得.
解答 解:∵a1,a2,a3,a4∈R+,
∴a12+a22≥2a1a2,a22+a32≥2a2a3,
a32+a42≥2a3a4,a12+a42≥2a1a4,
以上四个式子相加可得2(a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+a${\;}_{3}^{2}$+a${\;}_{4}^{2}$)≥2(a1a2+a2a3+a3a4+a4a1),
∴a${\;}_{1}^{2}$+a${\;}_{2}^{2}$+a${\;}_{3}^{2}$+a${\;}_{4}^{2}$≥a1a2+a2a3+a3a4+a4a1,
当且仅当a1=a2=a3=a4时取等号,
故选:D
点评 本题考查基本不等式,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{1}{2}$,$\frac{1}{2}$] | B. | [-1,1] | C. | [-$\frac{1}{2}$,1] | D. | [-1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | 无法确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com