精英家教网 > 高中数学 > 题目详情
如图,有一个圆环型花圃,要在花圃的6个部分栽种4种不同颜色的花,每部分栽种1种,且相邻部分栽种不同颜色的花,则不同的栽种方法有
 
种.
考点:排列、组合及简单计数问题
专题:应用题,排列组合
分析:先栽种1,有四种选择,再栽种2,有3种选择,第三步栽种3,有2种选择,第四步栽种4时,要分类讨论,即可得出结论.
解答: 解:先栽种1,有四种选择,再栽种2,有3种选择,第三步栽种3,有2种选择,第四步栽种4时,要分类讨论,若4栽种的花颜色与2同,则此时5有两种栽种方法,6有一种栽种方法,若4栽种的颜色与2不同,则4有一种栽种方法,若5与2栽种颜色同,则6有两种栽种方法,若5与2不同,则5有一种栽种方法,6也是一种故不同的栽种方法和数是4×3×2×(1×2×1+1×(1×2+1×1))=120种;
故答案为:120.
点评:本题考查计数原理的应用,解题的关键是正确理解题意,用加法原理与乘法原理对栽种方法进行计数.本题比较抽象,易因为分类不清或找不到合适的分类方法导致答案错误,故解题时要注意分步与分类是否合理,有没有重复与遗漏的现象.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=3sin(
1
2
x+
π
4
)的周期为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图1,则该几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n为直线,a,b为平面,给出下列命题,其中的正确命题序号是
 

m⊥α
m⊥n
⇒n∥α  ②
m⊥β
n⊥β
⇒m∥n  ③
m⊥α
m⊥β
⇒α∥β  ④
m?α
n?β⇒m∥n
α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y≤1
x+1≥0
x-y≤1
,则z=2x+3y的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①若函数f(x)=asinx+cosx的一个对称中心是(
π
6
,0),则a的值为-
3

②函数f(x)=cos(2x+
π
2
)在区间[0,
π
2
]上单调递减;
③已知函数f(x)=sin(2x+ϕ)(-π<ϕ<π),若-|f(
π
6
)|≤f(x)对任意x∈R恒成立,则ϕ=
π
6
或-
6

④函数f(x)=|sin(2x-
π
3
)+1|的最小正周期为π.
其中正确结论的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)是定义在R上的奇函数,当x>0时,f(x)=x2+1,则f(-2)+f(0)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人练习射击,命中目标的概率分别为
1
2
1
3
,甲、乙两人各射击一次,目标被命中的概率为(  )
A、
2
3
B、
1
3
C、
1
6
D、
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-1)2+n (x∈[-1,3],n∈N*)的最小值为an,最大值为bn,记cn=bn2-anbn,则{cn}是(  )
A、常数数列
B、公比不为1的等比数列
C、公差不为0的等差数列
D、非等差数列也非等比数列

查看答案和解析>>

同步练习册答案