精英家教网 > 高中数学 > 题目详情
9.已知抛物线y2=2px(p>0)的焦点为F,若过点F且斜率为2$\sqrt{2}$的直线与抛物线在第一象限的交点为P(x0,2$\sqrt{2}$),则x0等于(  )
A.2B.2+$\sqrt{2}$C.3+$\sqrt{2}$D.3$\sqrt{2}$

分析 求得抛物线的焦点,由P在抛物线上,代入抛物线的方程,运用直线的斜率公式,解方程可得x0

解答 解:抛物线y2=2px(p>0)的焦点为F($\frac{p}{2}$,0),
由P在抛物线上,可得x0=$\frac{8}{2p}$=$\frac{4}{p}$,
由过点F且斜率为2$\sqrt{2}$的直线,可得:
2$\sqrt{2}$=$\frac{2\sqrt{2}-0}{\frac{4}{p}-\frac{p}{2}}$,
即有p2+2p-8=0,
解得p=2或p=-4(舍去),
即有x0=2.
故选:A.

点评 本题考查抛物线的方程和运用,考查直线的斜率公式的运用,以及运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.在梯形ABCD中AD∥BC,已知AD=4,BC=6,若$\overrightarrow{CD}$=m$\overrightarrow{BA}$+n$\overrightarrow{BC}$(m,n∈R)则$\frac{m}{n}$=(  )
A.-3B.-$\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{a}$=(1,-1),A(0,4),B(n,t),C(t,ksinθ)θ∈[0,$\frac{π}{2}$]
(1)若$\overrightarrow{AB}⊥\overrightarrow{a}$,且$\frac{\sqrt{2}}{2}$|$\overrightarrow{AB}$|=|$\overrightarrow{OA}$|(O为原点),求向量$\overrightarrow{AB}$;
(2)若向量$\overrightarrow{AC}$与向量$\overrightarrow{a}$共线,求t关于θ的函数;
(3)求tsinθ取得最大值1(k≥2)时的$\overrightarrow{AC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在(2x+1)6(x+3)4展开式中,x2项的系数是(  )
A.1350B.4914C.6156D.6210

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.有算法语句如下,其运算的结果是(  )
A.12B.3C.4D.$\frac{275}{72}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=axe-x+(a-1)lnx,其中a是常数(e是自然对数的底数),且f(x)在x=1处的切线l方程为ey=1.
(1)写出函数f(x)的定义域,并求函数f(x)的单调区间和最值;
(2)设F(x)=xe-x,x∈R,如果x1≠x2,且F(x1)=F(x2),证明:x1+x2>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数y=${∫}_{0}^{x}$costdt的导数是cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若(a$\sqrt{x}$-$\frac{1}{\root{3}{x}}$)5展开式中的常数项为-40,则a=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.△ABC的斜二测直观图△A′B′C′如图所示,则△ABC的面积为(  )
A.1B.2C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案