精英家教网 > 高中数学 > 题目详情
已知f(x)是奇函数,当x>0时f(x)=-x(1+x),当x<0时,f(x)等于(  )
A、-x(1-x)
B、x(1-x)
C、-x(1+x)
D、x(1+x)
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:当x<0时,-x>0,由已知表达式可求得f(-x),由奇函数的性质可得f(x)与f(-x)的关系,从而可求出f(x).
解答: 解:当x<0时,-x>0,
则f(-x)=x(1-x).
又f(x)是R上的奇函数,所以当x<0时f(x)=-f(-x)=-x(1-x).
故项A.
点评:本题考查函数解析式的求解及奇函数的性质,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,AB⊥AD,AB∥CD,CD=AD=2AB=2AP.

(1)求证:平面PAD⊥平面PAD;
(2)在侧棱PC上是否存在点E,使得BE∥平面PAD,若存在,确定点E位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:关于x的方程x2-x+a=0无实根;命题q:关于x的函数y=-x2-ax+1在[-1,+∞)上是减函数.若?q为真命题,p∨q为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

有两枚大小相同、质地均匀的正四面体玩具,每个玩具的各个面上分别写着数字1,2,3,5.同时投掷这两枚玩具一次,记m为两个下的面上的数字之和.
(Ⅰ)求事件“m不小于6”的概率;
(Ⅱ)求事件“m为奇数”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

从分别写有A,B,C,D,E的五张卡片中任取两张,这两张的字母顺序恰好相邻的概率是(  )
A、
2
5
B、
1
5
C、
3
10
D、
7
10

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC的三个顶点分别是A(1,-1,2),B(5,-6,2),C(1,3,-1),则AC边上的高BD长为(  )
A、5
B、
41
C、4
D、2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知各项均为正数的等比数列{an},若2a4+a3-2a2-a1=8,则2a6+a5的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x(x-1)<0的解集是(  )
A、{x|x<0}
B、{x|x<1}
C、{x|0<x<1}
D、{x|x<0或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)的图象经过点(3,27),则f(-2)的值等于(  )
A、4B、-4C、8D、-8

查看答案和解析>>

同步练习册答案