精英家教网 > 高中数学 > 题目详情
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,AB⊥AD,AB∥CD,CD=AD=2AB=2AP.

(1)求证:平面PAD⊥平面PAD;
(2)在侧棱PC上是否存在点E,使得BE∥平面PAD,若存在,确定点E位置;若不存在,说明理由.
考点:平面与平面垂直的判定
专题:空间位置关系与距离
分析:(1)根据面面垂直的判断定理即可证明平面PAD⊥平面PAD;
(2)根据线面平行的性质定理即可得到结论.
解答: (1)证明:∵PA⊥平面ABCD
∴PA⊥CD ①
又∵AB⊥AD,AB∥CD,
∴CD⊥AD ②
由①②可得 CD⊥平面PAD
又CD?平面PCD
∴平面PCD⊥平面PAD
(2)解:当点E是PC的中点时,BE∥平面PAD.
证明如下:设PD的中点为F,连接EF,AF
易得EF是△PCD的中位线
∴EF∥CD,EF=
1
2
CD
由题设可得  AB∥CD,AF=
1
2
CD
∴EF∥AB,EF=AB
∴四边形ABEF为平行四边形
∴BE∥AF
又BE?平面PAD,AF?平面PAD
∴BE∥平面PAD
点评:本题主要考查空间直线和平面平行或垂直的判断,要求熟练掌握相应的判定定理.考查学生的推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=
1
x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=-x+1与椭圆
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B两点,若椭圆的离心率为
2
2
,焦距为2,则线段AB的长是(  )
A、
2
3
2
B、
4
3
2
C、
2
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是两个边长为2的正三角形,DC=4,O为BD的中点,E为PA的中点.
(Ⅰ)求证:OE∥平面PCD;
(Ⅱ)求直线CE与平面PDC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=16x的焦点为F,直线y=k(x-4)与此抛物线相交于P,Q两点,则
1
|FP|
+
1
|FQ|
=(  )
A、1
B、
1
2
C、
1
4
D、
1
8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax+lnx.
(Ⅰ)若a=1,求f(x)在x∈[1,e]上的最大值;
(Ⅱ)若当x∈[1,e]时,f(x)≤0恒成立,求a的取值范围;
(Ⅲ)函数F(x)=ax+lnx+x2在区间(0,2)上有两个极值点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+2ax+4
(1)当a=-1时,求函数f(x)在区间[-2,2]上的最大值;
(2)若函数f(x)在区间[-1,3]上有零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求直线x-y+4=0被圆(x+2)2+(y-2)2=2截得的弦长.
(2)直线x-2y-3=0与圆(x-2)2+(y+3)2=9交于E,F两点,求△EOF(O是原点)的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是奇函数,当x>0时f(x)=-x(1+x),当x<0时,f(x)等于(  )
A、-x(1-x)
B、x(1-x)
C、-x(1+x)
D、x(1+x)

查看答案和解析>>

同步练习册答案