精英家教网 > 高中数学 > 题目详情

【题目】是两条不同的直线, 是三个不同的平面,给出下列四个命题:

①若,则 ②若,则

③若,则 ④若,则

其中正确命题的序号是( )

A. ①和② B. ②和③ C. ③和④ D. ①和④

【答案】A

【解析】对于①,因为n∥α,所以经过n作平面β,使β∩α=l,可得n∥l,

又因为m⊥α,lα,所以m⊥l,结合n∥lm⊥n.由此可得①是真命题;

对于②,因为α∥β且β∥γ,所以α∥γ,结合m⊥α,可得m⊥γ,故②是真命题;

对于③,设直线m、n是位于正方体上底面所在平面内的相交直线,

而平面α是正方体下底面所在的平面,

则有m∥α且n∥α成立,但不能推出m∥n,故③不正确;

对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面,

则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故④不正确。

综上所述,其中正确命题的序号是①和②

本题选择A选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数为实数).

(1)当时,求函数的图象在点处的切线方程;

(2)设函数(其中为常数),若函数在区间上不存在极值,且存在

,求的取值范围;

(3)已知,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次国际学术会议上,来自四个国家的五位代表被安排坐在一张圆桌,为了使他们能够自由交谈,事先了解到的情况如下:

甲是中国人,还会说英语.

乙是法国人,还会说日语.

丙是英国人,还会说法语.

丁是日本人,还会说汉语.

戊是法国人,还会说德语.

则这五位代表的座位顺序应为( )

A. 甲丙丁戊乙 B. 甲丁丙乙戊

C. 甲乙丙丁戊 D. 甲丙戊乙丁

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)求的最小正周期和单调递增区间;

(Ⅱ)说明函数的图像可由正弦曲线经过怎样的变化得到;

(Ⅲ)若是第二象限的角,求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,设.

(1)求函数的最小正周期;

(2)由的图象经过怎样变换得到的图象?试写出变换过程;

(3)当时,求函数的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求曲线在点处的切线方程和函数的极值:

(2)若对任意,都有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区客栈的工作人员为了控制经营成本,减少浪费,合理安排入住游客的用餐,他们通过统计每个月入住的游客人数,发现每年各个月份来客栈入住的游客人数会发生周期性的变化,并且有以下规律:

①每年相同的月份,入住客栈的游客人数基本相同;

②入住客栈的游客人数在2月份最少,在8月份最多,相差约400人;

③2月份入住客栈的游客约为100人,随后逐月递增直到8月份达到最多.

(1)若入住客栈的游客人数与月份之间的关系可用函数 )近似描述,求该函数解析式;

(2)请问哪几个月份要准备不少于400人的用餐?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国内某汽车品牌一个月内被消费者投诉的次数用表示,据统计,随机变量的概率分布如下:

(1)求的值;

(2)假设一月与二月被消费者投诉的次数互不影响,求该汽车品牌在这两个月内被消费者投诉次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆O的直径,点E,F在圆O上,且AB//EF,AB=2EF,矩形ABCD所在的平面和圆O所在的平面互相垂直.

I证明:OF//平面BEC;

证明:平面ADF平面BCF.

查看答案和解析>>

同步练习册答案