精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为,若x=时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
【答案】分析:(1)求出f′(x),由x=1时,切线l的斜率为3得,f′(1)=3;x=时,y=f(x)有极值,得f′()=0;两者联立可解a,b值;设切线l的方程为y=3x+m,由原点到切线l的距离为,可得一方程,可得m,根据不过四象限,可确定m取舍;
(2)由(1)可得f(x)表达式,利用导数可求得函数极值、在区间端点处的函数值,对其进行比较即可得到最大值、最小值;
解答:解:(1)由f(x)=x3+ax2+bx+c,得f′(x)=3x2+2ax+b,
当x=1时,切线l的斜率为3,可得2a+b=0.①
当x=时,y=f(x)有极值,则f′()=0,即4a+3b+4=0②
联立①②解得a=2,b=-4.
设切线l的方程为y=3x+m,
由原点到切线l的距离为
则==
解得m=±1.
∵切线l不过第四象限,∴m=1,
由于切点的横坐标为x=1,∴f(1)=4,
∴1+a+b+c=4,∴c=5.
故a=2,b=-4,c=5.
(2)由(1)可得f(x)=x3+2x2-4x+5,
∴f′(x)=3x2+4x-4.
令f′(x)=0,得x=-2,x=
当x变化时,f(x)和f′(x)的变化情况如下表:
x[-3,-2)-2(-2,,1]
f′(x)+-+
f(x)??↑极大值??↓极小值?↑?
∴f(x)在x=-2处取得极大值f(-2)=13,
在x=处取得极小值f()=
又f(-3)=8,f(1)=4,
∴f(x)在[-3,1]上的最大值为13,最小值为
点评:本题考查函数在某点取得极值的条件、利用导数求函数在闭区间上的最值问题,准确求导,熟练运算是解决该类问题的基础,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案