【题目】已知点
及圆
.
(1)若直线
过点
且与圆心
的距离为1,求直线
的方程;
(2)设过点
的直线
与圆
交于
两点,当
时,求以线段
为直径的圆
的方程;
(3)设直线
与圆
交于
两点,是否存在实数
,使得过点
的直线
垂直平分弦
?若存在,求出实数
的值;若不存在,请说明理由.
【答案】(1)
或
;(2)
;(3)不存在.
【解析】
(1)设出直线方程,结合点到直线距离公式,计算参数,即可。(2)证明得到点P为MN的中点,建立圆方程,即可。(3)将直线方程代入圆方程,结合交点个数,计算a的范围,计算直线
的斜率,计算a的值,即可。
(1)直线
斜率存在时,设直线
的斜率为
,则方程为
,即
.又圆
的圆心为
,半径
,由
,解得
.
所以直线方程为
,即
.
当
的斜率不存在时,
的方程为
,经验证
也满足条件.
即直线
的方程为
或
.
(2)由于
,而弦心距
,
所以
.
所以
恰为
的中点.
故以
为直径的圆
的方程为
.
(3)把直线
代入圆
的方程,消去
,整理得
.
由于直线
交圆
于
两点,
故
,
即
,解得
.
则实数
的取值范围是
.
设符合条件的实数
存在,
由于
垂直平分弦
,故圆心
必在
上.所以
的斜率
,
而
,
所以
.由于
,
故不存在实数
,使得过点
的直线
垂直平分弦
.
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)当
时,解不等式
;
(2)若关于
的方程
的解集中恰有两个元素,求
的取值范围;
(3)设
,若对任意
,函数
在区间
上的最大值与最小值的和不大于
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列说法:
①集合
与集合
是相等集合;
②不存在实数
,使
为奇函数;
③若
,且f(1)=2,则
;
④对于函数
在同一直角坐标系中,若
,则函数
的图象关于直线
对称;
⑤对于函数
在同一直角坐标系中,函数
与
的图象关于直线
对称;其中正确说法是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的直线方程.
(1)经过点A(-1,-3),且斜率等于直线3x+8y-1=0斜率的2倍;
(2)过点M(0,4),且与两坐标轴围成三角形的周长为12.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
=(2﹣sin(2x+
),﹣2),
=(1,sin2x),f(x)=![]()
, (x∈[0,
])
(1)求函数f(x)的值域;
(2)设△ABC的内角A,B,C的对边长分别为a,b,c,若f(
)=1,b=1,c=
, 求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若函数
在
上是减函数,求实数
的取值范围;
(2)是否存在整数
,
,使得
的解集恰好是
,若存在,求出
,
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】银川一中为研究学生的身体素质与课外体育锻炼时间的关系,抽取在校200名学生的课外体育锻炼平均每天运动的时间(单位:分钟)进行调查,将收集的数据分成
,
六组,并作出频率分布直方图(如图),将日均课外体育锻炼时间不低于40分钟的学生评价为“课外体育达标”.
课外体育不达标 | 课外体育达标 | 合计 | |
男 |
| ||
女 |
| ||
合计 |
(1)请根据直方图中的数据填写下面的
列联表,并通过计算判断是否能在犯错误的概率不超过
的前提下认为“课外体育达标”与性别有关?
(2)在
这两组中采取分层抽样,抽取6人,再从这6名学生中随机抽取2人参加体育知识问卷调查,求这2人中一人来自“课外体育达标”和一人来自“课外体育不达标”的概率.
![]()
附参考公式与:![]()
|
|
|
|
|
|
| |
|
|
|
|
|
|
|
|
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com