精英家教网 > 高中数学 > 题目详情
15.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上、下顶点分别为A,B,右焦点为F,点P在椭圆C上,且OP⊥AF.
(1)若点P坐标为(1,$\sqrt{3}$),求椭圆C的方程;
(2)延长AF交椭圆C与点Q,若直线OP的斜率是直线BQ的斜率的3倍,求椭圆C的离心率;
(3)是否存在椭圆C,使直线AF平分线段OP?

分析 (1)根据点P在椭圆C上,且OP⊥AF.列式求出a、b即可
(2)由AF:$\frac{x}{c}+\frac{y}{b}=1$与$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$联立,得${x_Q}=\frac{{2{a^2}c}}{{{a^2}+{c^2}}}$,${y_Q}=\frac{{b({c^2}-{a^2})}}{{{a^2}+{c^2}}}$.由直线OP的斜率是直线BQ的斜率的3倍,得$\frac{c}{b}=\frac{3bc}{a^2}$,$e=\frac{{\sqrt{6}}}{3}$.
(3)OP:$y=\frac{c}{b}x$.设AF与OP交于H点,由$\left\{{\begin{array}{l}{y=\frac{c}{b}x}\\{\frac{x}{c}+\frac{y}{b}=1}\end{array}}\right.$,得$H(\frac{{{b^2}c}}{a^2},\frac{{b{c^2}}}{a^2})$.$P(\frac{{2{b^2}c}}{a^2},\frac{{2b{c^2}}}{a^2})$代入椭圆方程得$\frac{{4{b^4}{c^2}}}{a^6}+\frac{{4{b^2}{c^4}}}{{{a^4}{b^2}}}=1$,令$\frac{c^2}{a^2}=t(0<t<1)$,得4[(-t)2t+t2]=1,设$f(t)={t^3}-{t^2}+t-\frac{1}{4}$,只需f(t)在(0,1)存在t,使f(t)=0即可判定,

解答 解:(1)A(0,b),F(-c,0),${k_{AF}}=-\frac{b}{c}=-\frac{1}{{\sqrt{3}}}$,∴$c=\sqrt{3}b$.∴a2=4b2
又$P(1,\sqrt{3})$,∴$\frac{1}{{4{b^2}}}+\frac{3}{b^2}=1$.∴${b^2}=\frac{13}{4}$,a2=13.∴方程为$\frac{x^2}{13}+\frac{y^2}{{\frac{13}{4}}}=1$.

(2)AF:$\frac{x}{c}+\frac{y}{b}=1$与$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$联立,得,$\frac{x^2}{a^2}+{(1-\frac{x}{c})^2}=1$.∴${x_Q}=\frac{{2{a^2}c}}{{{a^2}+{c^2}}}$,${y_Q}=\frac{{b({c^2}-{a^2})}}{{{a^2}+{c^2}}}$.
又B(0,-b),∴${k_{BQ}}=\frac{bc}{a^2}$.∵${k_{OP}}=\frac{c}{b}$,
∵直线OP的斜率是直线BQ的斜率的3倍
∴$\frac{c}{b}=\frac{3bc}{a^2}$,∴$e=\frac{{\sqrt{6}}}{3}$.
(3)OP:$y=\frac{c}{b}x$.设AF与OP交于H点,
由$\left\{{\begin{array}{l}{y=\frac{c}{b}x}\\{\frac{x}{c}+\frac{y}{b}=1}\end{array}}\right.$,得$H(\frac{{{b^2}c}}{a^2},\frac{{b{c^2}}}{a^2})$.
由直线AF平分线段OP,得$P(\frac{{2{b^2}c}}{a^2},\frac{{2b{c^2}}}{a^2})$代入椭圆方程,
得$\frac{{4{b^4}{c^2}}}{a^6}+\frac{{4{b^2}{c^4}}}{{{a^4}{b^2}}}=1$,令$\frac{c^2}{a^2}=t(0<t<1)$,
得4[(-t)2t+t2]=1,设$f(t)={t^3}-{t^2}+t-\frac{1}{4}$,f'(t)=3t2-2t+1>0恒成立,∴f(t)在(0,1)上递增.
又$f(0)=-\frac{1}{4}<0$,$f(1)=\frac{3}{4}>0$,
∴f(t)在(0,1)存在t,使f(t)=0,
∴存在椭圆C,使AF平分线段OP.

点评 本题考查了椭圆的方程,直线与椭圆的位置关系,考查了方程思想、转化思想、计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ln($\frac{1+x}{1-x}$),若∨x∈[0,1),f(x)≥ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=3,an+1=2an+1(n∈N*).
(Ⅰ)写出数列{an}的前5项,并归纳猜想{an}的通项公式;
(Ⅱ)用数学归纳法证明(Ⅰ)中所猜想的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正方体ABCD-A1B1C1D1中,点E1、F1分别是A1B1、C1D1的四等分点,求BE1与DF1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为$\frac{1}{7}$,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,在每一次摸球时袋中每个球被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求甲取到白球的概率;
(2)求随机变量ξ的概率分布及均值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,点P到两点(0,-$\sqrt{3}$),(0,$\sqrt{3}$)的距离之和等于4.
(1)求点P的轨迹方程;
(2)设点P的轨迹为C,直线y=kx+1与C交于A,B两点,若$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要排一张有7个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,则有多少种不同的排法(  )
A.$A_7^7A_8^3$B.$A_7^7A_7^3$C.$A_7^7A_6^3$D.$A_7^7A_{10}^3$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过抛物线y2=2px(p>0)的焦点F的直线与双曲线x2-$\frac{{y}^{2}}{3}$=1的一条渐进线平行,并交抛物线于A、B两点,若|AF|>|BF|,且|AF|=2,则抛物线的方程为y2=2x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起照合影像(排成一排).
(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?
(2)要求灰太狼、红太狼不相邻,有多少种排法?
(3)记灰太狼和红太狼之间的喜羊羊家族的成员个数为ξ,求ξ的概率分布.

查看答案和解析>>

同步练习册答案