分析 (1)利用组合数公式计算白球个数,再对甲取球次数进行讨论计算概率;
(2)利用条件概率公式计算ξ的分布列,得出均值.
解答 解:(1)设袋中原有n个白球,由题意知,$\frac{{C}_{n}^{2}}{{C}_{7}^{2}}$=$\frac{1}{7}$,即$\frac{n(n-1)}{42}$=$\frac{1}{7}$,
∴n(n-1)=6,解得n=3或n=-2(舍去),即袋中原有3个白球.
记“甲取到白球”为事件A,
则P(A)=$\frac{3}{7}$+$\frac{4}{7}×\frac{3}{6}×\frac{3}{5}$+$\frac{4}{7}×\frac{3}{6}×\frac{2}{5}×\frac{1}{4}$×$\frac{3}{3}$=$\frac{22}{35}$.
∴甲取到白球的概率为$\frac{22}{35}$.
(2)ξ的可能取值为1,2,3,4,5,
P(ξ=1)=$\frac{3}{7}$,P(ξ=2)=$\frac{4}{7}×\frac{3}{6}$=$\frac{2}{7}$,P(ξ=3)=$\frac{4}{7}×\frac{3}{6}×\frac{3}{5}$=$\frac{6}{35}$,
P(ξ=4)=$\frac{4}{7}×\frac{3}{6}×\frac{2}{5}×\frac{3}{4}$=$\frac{3}{35}$,P(ξ=5)=$\frac{4}{7}×\frac{3}{6}×\frac{2}{5}×\frac{1}{4}×\frac{3}{3}$=$\frac{1}{35}$.
∴ξ的分布列为:
| ξ | 1 | 2 | 3 | 4 | 5 |
| P | $\frac{3}{7}$ | $\frac{2}{7}$ | $\frac{6}{35}$ | $\frac{3}{35}$ | $\frac{1}{35}$ |
点评 本题考查了离散型随机变量的分布列,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 36 | C. | 24 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow a+\overrightarrow b=\overrightarrow 0$ | B. | $\overrightarrow a=\overrightarrow b$ | ||
| C. | $\overrightarrow a$与$\overrightarrow b$共线反向 | D. | 存在正实数λ,使$\overrightarrow a=λ\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{3}$ | B. | 2$\sqrt{2}$ | C. | $\sqrt{6}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com