精英家教网 > 高中数学 > 题目详情
14.(理科做)用数学归纳法证明:$1+2+3+…+n=\frac{n(n+1)}{2}\;n∈{N^*}$.

分析 用数学归纳法证明:(1)当n=1时,去证明等式成立;(2)假设当n=k时,等时成立,用上归纳假设后,去证明当n=k+1时,等式也成立即可.

解答 解:证明:(1)当n=1时,1=1,等式成立.
(2)假设当n=k时,有1+2+3+…+k=$\frac{1}{2}$k(k+1)成立.
那么,当n=k+1时,
1+2+3+…+k+k+1=$\frac{1}{2}$k(k+1)+(k+1)
=$\frac{1}{2}$(k+1)(k+2),
=$\frac{1}{2}$(k+1)[(k+1)+1],
∴当n=k+1时等式成立,
∴对任意的n∈N*,等式都成立.

点评 本题的考点是数学归纳法,主要考查数学归纳法的第二步,在假设的基础上,n=k+1时等式左边增加的项,关键是搞清n=k时,等式左边的规律,从而使问题得解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(1)已知$g(x)=\sqrt{x}$,求曲线g(x)在点(4,2)处的切线方程;
(2)已知函数f(x)=x3-3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
(3)求函数f(x)=x2-x-lnx的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,抛物线y2=4x的焦点为F,准线交x轴于点H,过H作直线l交抛物线于A,B两点,且|BF|=2|AF|,则△ABF的面积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.化简$2\sqrt{1-sin10}+\sqrt{2+2cos10}$的结果是(  )
A.4cos5-2sin5B.-2sin5-4cos5C.2sin5-4cos5D.-2sin5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在△ABC中,已知点D,E分别在边AB,BC上,且AB=3AD,BC=2BE.
(1)用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{DE}$;
(2)设AB=9,AC=6,A=60°,求线段DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ln($\frac{1+x}{1-x}$),若∨x∈[0,1),f(x)≥ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正项数列{an}中,a2=6,且$\frac{1}{{{a_1}+1}}$,$\frac{1}{{{a_2}+2}}$,$\frac{1}{{{a_3}+3}}$,成等差数列,则a1+3a3的最小值6+8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.根据如图所示的伪代码,当输入a,b分别为3,5时,最后输出的m的值是5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为$\frac{1}{7}$,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,在每一次摸球时袋中每个球被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求甲取到白球的概率;
(2)求随机变量ξ的概率分布及均值.

查看答案和解析>>

同步练习册答案