分析 由$\frac{1}{{{a_1}+1}}$,$\frac{1}{{{a_2}+2}}$,$\frac{1}{{{a_3}+3}}$,成等差数列,可得:$\frac{1}{{{a_1}+1}}$+$\frac{1}{{{a_3}+3}}$=$\frac{2}{{a}_{2}+2}$=$\frac{1}{4}$,即4($\frac{1}{{{a_1}+1}}$+$\frac{1}{{{a_3}+3}}$)=1,由数列{an}为正项数列,变形为a1+3a3=a1+1+3(a3+3)-10=4[a1+1+3(a3+3)]($\frac{1}{{{a_1}+1}}$+$\frac{1}{{{a_3}+3}}$)-10=4$(4+\frac{3({a}_{3}+3)}{{a}_{1}+1}+\frac{{a}_{1}+1}{{a}_{3}+3})$-10,利用基本不等式的性质即可得出.
解答 解:∵$\frac{1}{{{a_1}+1}}$,$\frac{1}{{{a_2}+2}}$,$\frac{1}{{{a_3}+3}}$,成等差数列,
∴$\frac{1}{{{a_1}+1}}$+$\frac{1}{{{a_3}+3}}$=$\frac{2}{{a}_{2}+2}$=$\frac{1}{4}$,即4($\frac{1}{{{a_1}+1}}$+$\frac{1}{{{a_3}+3}}$)=1,
∵数列{an}为正项数列,
∴a1+3a3=a1+1+3(a3+3)-10=4[a1+1+3(a3+3)]($\frac{1}{{{a_1}+1}}$+$\frac{1}{{{a_3}+3}}$)-10
=4$(4+\frac{3({a}_{3}+3)}{{a}_{1}+1}+\frac{{a}_{1}+1}{{a}_{3}+3})$-10
≥$4(4+2\sqrt{\frac{3({a}_{3}+3)}{{a}_{1}+1}•\frac{{a}_{1}+1}{{a}_{3}+3}})$-10=6+8$\sqrt{3}$,当且仅当a1+1=$\sqrt{3}$(a3+3)=$\frac{4\sqrt{3}}{3}$+4时取等号.
故答案为:6+8$\sqrt{3}$.
点评 本题考查了等差数列的通项公式及其性质、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| X | 1 | 2 | 3 | 4 |
| P | $\frac{1}{3}$ | m | $\frac{1}{4}$ | $\frac{1}{6}$ |
| A. | $\frac{7}{12}$ | B. | $\frac{5}{12}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 优秀 | 不优秀 | 合计 | |
| 甲班 | 10 | 35 | 45 |
| 乙班 | 7 | 38 | 45 |
| 合计 | 17 | 73 | 90 |
| A. | 0.3~0.4 | B. | 0.4~0.5 | C. | 0.5~0.6 | D. | 0.6~0.7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 40 | B. | 36 | C. | 24 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com