精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\frac{lnx+m}{{e}^{x}}$(m为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求m的值;
(2)求函数y=f(x)的单调区间.

分析 (1)求出函数的导函数,函数在点(1,f(1))处的切线与x轴平行,说明f′(1)=0,则m值可求;
(2)求出函数的定义域,然后让导函数等于0求出极值点,借助于导函数在各区间内的符号求函数f(x)的单调区间.

解答 解:(1)因为函数f(x)=$\frac{lnx+m}{{e}^{x}}$,
所以f′(x)=$\frac{\frac{1}{x}-lnx-m}{{e}^{x}}$,
因为曲线y=f(x)在点(1,f(1))处的切线与x轴平行,
所以f′(1)=0,即 $\frac{1-ln1-m}{e}$=0,解得m=1;
(2)函数f(x)的定义域为(0,+∞),
由f′(x)=$\frac{\frac{1}{x}-lnx-1}{{e}^{x}}$,
令g(x)=$\frac{1}{x}$-lnx-1,此函数只有一个零点1,
且当x>1时,g(x)<0,当0<x<1时,g(x)>0,
所以当x>1时,f′(x)<0,所以原函数在(1,+∞)上为减函数;
当0<x<1时,f′(x)>0,所以原函数在(0,1)上为增函数.
故函数f(x)的增区间为(0,1),减区间为(1,+∞).

点评 本题考查利用导数研究函数的单调性,考查学生会利用导数求曲线上过某点切线方程的斜率,会利用导数研究函数的单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{b}{a}$=$\frac{\sqrt{3}cosB}{sinA}$.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2$\sqrt{3}$,△ABC的面积为2$\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.化简$2\sqrt{1-sin10}+\sqrt{2+2cos10}$的结果是(  )
A.4cos5-2sin5B.-2sin5-4cos5C.2sin5-4cos5D.-2sin5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ln($\frac{1+x}{1-x}$),若∨x∈[0,1),f(x)≥ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正项数列{an}中,a2=6,且$\frac{1}{{{a_1}+1}}$,$\frac{1}{{{a_2}+2}}$,$\frac{1}{{{a_3}+3}}$,成等差数列,则a1+3a3的最小值6+8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(n)=\left\{{\begin{array}{l}{{n^2},n为奇数}\\{-{n^2},n为偶数}\end{array}}\right.$,且an=f(n)+f(n+1),则a1+a2+a3+…+a2014=(  )
A.-2013B.-2014C.2013D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.根据如图所示的伪代码,当输入a,b分别为3,5时,最后输出的m的值是5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=3,an+1=2an+1(n∈N*).
(Ⅰ)写出数列{an}的前5项,并归纳猜想{an}的通项公式;
(Ⅱ)用数学归纳法证明(Ⅰ)中所猜想的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.要排一张有7个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,则有多少种不同的排法(  )
A.$A_7^7A_8^3$B.$A_7^7A_7^3$C.$A_7^7A_6^3$D.$A_7^7A_{10}^3$

查看答案和解析>>

同步练习册答案