精英家教网 > 高中数学 > 题目详情
1.在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{b}{a}$=$\frac{\sqrt{3}cosB}{sinA}$.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2$\sqrt{3}$,△ABC的面积为2$\sqrt{3}$,求△ABC的周长.

分析 (1)由题意得$\frac{sinB}{sinA}=\frac{\sqrt{3}cosB}{sinA}$ 即sinB=$\sqrt{3}$cosB,tanB=$\sqrt{3}$即可得B.
(2)${s}_{△ABC}=\frac{1}{2}acsinB=\frac{\sqrt{3}}{4}ac=2\sqrt{3}$,可得ac=8,由余弦定理得b2=a2+c2-2accosB,可得a+c即可得△ABC的周长.

解答 解:(1)由题意得$\frac{sinB}{sinA}=\frac{\sqrt{3}cosB}{sinA}$ …(2分)
即sinB=$\sqrt{3}$cosB…(4分)
tanB=$\sqrt{3}$…(5分)
∵0<B<π,∴$B=\frac{π}{3}$…(6分)
(2)${s}_{△ABC}=\frac{1}{2}acsinB=\frac{\sqrt{3}}{4}ac=2\sqrt{3}$∴ac=8…(8分)
由余弦定理得b2=a2+c2-2accosB
∴12=a2+c2-ac=(a+c)2-3ac,
∴(a+c)2=36,a+c=6
∴△ABC的周长为6+2$\sqrt{3}$…(12分)

点评 本题考查了正余弦定理的应用,考查了计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.函数y=cos(2x-1)的导数为(  )
A.y'=-2sin(2x-1)B.y'=-2cos(2x-1)C.y'=-sin(2x-1)D.y'=-cos(2x-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=asinx+blog2$\frac{1+x}{1-x}$+2(a,b为常数),若f(x)在(0,1)上有最小值为-4,则f(x)在(-1,0)上有(  )
A.最大值8B.最大值6C.最大值4D.最大值2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知各项都为整数的数列{an}中,a1=2,且对任意的n∈N*,满足an+1-an<2n+$\frac{1}{2}$,an+2-an>3×2n-1,则a2019被3除所得余数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求值:cos2α+cos2β+sin2αsin2β-cos2αcos2β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C:(x-2)2+(y-1)2=1,点P为直线x+2y-9=0上一动点,过点P向圆C引两条切线PA,PB,其中A,B为切点,则$\overrightarrow{PA}•\overrightarrow{PB}$的取值范围为[$\frac{12}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设数列{an}的前n项和为Sn.已知a1=1,2Sn=nan+1-$\frac{n(n+1)(n+2)}{3}$,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ) 证明:对一切正整数n,有$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x2+3,则f(x)在(2,f(2))处的切线方程为4x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+m}{{e}^{x}}$(m为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求m的值;
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

同步练习册答案