精英家教网 > 高中数学 > 题目详情
9.已知各项都为整数的数列{an}中,a1=2,且对任意的n∈N*,满足an+1-an<2n+$\frac{1}{2}$,an+2-an>3×2n-1,则a2019被3除所得余数为2.

分析 ${a_{n+1}}-{a_n}<{2^n}+\frac{1}{2}$,可得${a_{n+2}}-{a_{n+1}}<{2^{n+1}}+\frac{1}{2}$,两式左右两边分别相加得an+2-an<3×2n+1,又${a_{n+2}}-{a_n}>3×{2^n}-1$,且n∈N*,可得${a_{n+2}}-{a_n}=3×{2^n}$,从而a2019=(a2019-a2017)+(a2017-a2015)…+(a3-a1)+a1=22019=(3-1)2019,利用二项式定理展开即可得出.

解答 解:${a_{n+1}}-{a_n}<{2^n}+\frac{1}{2}$,所以${a_{n+2}}-{a_{n+1}}<{2^{n+1}}+\frac{1}{2}$,
两式左右两边分别相加得an+2-an<3×2n+1,
又${a_{n+2}}-{a_n}>3×{2^n}-1$,且n∈N*
所以${a_{n+2}}-{a_n}=3×{2^n}$,
从而a2019=(a2019-a2017)+(a2017-a2015)…+(a3-a1)+a1
=3(22017+22015+…+2)+2=$3×2×\frac{{4}^{1009}-1}{4-1}$+2=22019=(3-1)2019=${3}^{2019}-{∁}_{2019}^{1}{3}^{2018}$+…+${∁}_{2019}^{2018}$•3-1
=3(32018-2019×32017+…)-3+2,
所以a2019被3除所得余数为2.
故答案为:2.

点评 本题考查了等比数列的通项公式与求和公式、数列递推关系、二项式定理的应用、整除的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.两个相关变量满足如下关系:
x1015202530
y1 0031 0051 0101 0111 014
则两变量的回归方程为(  )
A.$\widehat{y}$=0.56x+997.4B.$\widehat{y}$=0.63x-231.2C.$\widehat{y}$=0.56x+501.4D.$\widehat{y}$=60.4x+400.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设P为椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上的动点,F1、F2为椭圆C的焦点,I为△PF1F2的内心,则直线IF1和直线IF2的斜率之积(  )
A.是定值B.非定值,但存在最大值
C.非定值,但存在最小值D.非定值,且不存在最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两地相距600千米,一辆货车从甲地匀速行驶到乙地,规定速度不超过100千米/小时.已知货车每小时的运输成本(单位:元)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为0.02;固定部分为m元.
(1)把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域;
(2)为了使全程运输成本最小,货车应以多大速度匀速行驶?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)已知$g(x)=\sqrt{x}$,求曲线g(x)在点(4,2)处的切线方程;
(2)已知函数f(x)=x3-3x,过点A(0,16)作曲线y=f(x)的切线,求此切线方程.
(3)求函数f(x)=x2-x-lnx的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.给出下列命题:
①函数y=cos($\frac{2}{3}$x+$\frac{π}{2}$)是奇函数;
②存在实数x,使sinx+cosx=2;
③若α,β是第一象限角且α<β,则tanα<tanβ;
其中正确命题的序号为①.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,内角A,B,C的对边分别为a,b,c,且$\frac{b}{a}$=$\frac{\sqrt{3}cosB}{sinA}$.
(Ⅰ)求角B的大小;
(Ⅱ)若b=2$\sqrt{3}$,△ABC的面积为2$\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设命题的结论不成立的正确叙述是②(填序号).
①假设三个角都不大于60°;         ②假设三个角都大于60°;
③假设三个角至多有一个大于60°;    ④假设三个角至多有两个大于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ln($\frac{1+x}{1-x}$),若∨x∈[0,1),f(x)≥ax恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案