精英家教网 > 高中数学 > 题目详情
7.要排一张有7个歌唱节目和3个舞蹈节目的演出节目单,任何两个舞蹈节目不得相邻,则有多少种不同的排法(  )
A.$A_7^7A_8^3$B.$A_7^7A_7^3$C.$A_7^7A_6^3$D.$A_7^7A_{10}^3$

分析 根据题意,分2步进行分析:①、将7个歌唱节目全排列,分析排好后的空位,②、在空位中任选3个,安排3个舞蹈节目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、将7个歌唱节目全排列,有A77种情况,排好后有8个空位,
②、在8个空位中任选3个,安排3个舞蹈节目,有A83种情况,
则任何两个舞蹈节目不得相邻的情况有A77×A83种情况,
故选:A.

点评 本题考查分步计数原理的应用,涉及不能相邻问题,需要用插空法分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{lnx+m}{{e}^{x}}$(m为常数,e是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求m的值;
(2)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“若x=2,则x2-5x+6=0”的逆命题、否命题与逆否命题中,假命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上、下顶点分别为A,B,右焦点为F,点P在椭圆C上,且OP⊥AF.
(1)若点P坐标为(1,$\sqrt{3}$),求椭圆C的方程;
(2)延长AF交椭圆C与点Q,若直线OP的斜率是直线BQ的斜率的3倍,求椭圆C的离心率;
(3)是否存在椭圆C,使直线AF平分线段OP?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设a∈R,解关于x的不等式ax2-(a+1)x+1<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列函数中,在其定义域内既是奇函数又是增函数的是(  )
A.y=-$\frac{1}{x}$B.y=|x|C.y=x${\;}^{\frac{1}{3}}$D.y=sinx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,以线段F1F2为边作正三角形F1MF2,如果线段MF1的中点在双曲线的渐近线上,则该双曲线的离心率e等于(  )
A.2$\sqrt{3}$B.2$\sqrt{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M={x|x2-3x+2=0},N={-2,-1,1,2},则M∩N={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.袋子中装有大小相同的八个小球,其中白球五个,分别编号1、2、3、4、5;红球三个,分别编号1、2、3,现从袋子中任取三个小球,它们的最大编号为随机变量X,则P(X=3)等于(  )
A.$\frac{5}{28}$B.$\frac{1}{7}$C.$\frac{15}{56}$D.$\frac{2}{7}$

查看答案和解析>>

同步练习册答案