精英家教网 > 高中数学 > 题目详情
4.甲、乙两个班级进行一门考试,按照学生考试成绩优秀和不优秀统计成绩后,得到如下列联表:
优秀不优秀合计
甲班103545
乙班73845
合计177390
利用独立性检验估计,你认为推断“成绩与班级有关系”错误的概率介于(  )
A.0.3~0.4B.0.4~0.5C.0.5~0.6D.0.6~0.7

分析 根据表中数据计算观测值K2,对照临界值表,即可得出正确的结论.

解答 解:根据表中数据,计算观测值:
K2=$\frac{90{×(10×38-7×35)}^{2}}{17×73×45×45}$≈0.6527,
对照临界值表(观测值表)知,

P(K2≥k00.500.400.250.15
k00.4550.7081.3232.072
0.455<0.6527<0.708,
由P(K>0.708)=0.40,P(K>0.455)=0.50,
推断“成绩与班级有关系”错误的概率介于0.4~0.5.
故选:B.

点评 本题考查了独立性检验的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知两个等差数列{an}和{bn}的前n项和之比为$\frac{7n+1}{4n+27}(n∈{N^*})$,则$\frac{{{a_{11}}}}{{{b_{11}}}}$等于(  )
A.$\frac{78}{71}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{7}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在△ABC中,已知点D,E分别在边AB,BC上,且AB=3AD,BC=2BE.
(1)用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{DE}$;
(2)设AB=9,AC=6,A=60°,求线段DE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知正项数列{an}中,a2=6,且$\frac{1}{{{a_1}+1}}$,$\frac{1}{{{a_2}+2}}$,$\frac{1}{{{a_3}+3}}$,成等差数列,则a1+3a3的最小值6+8$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点F(-1,0),直线l:x=1,动点P到点F的距离等于它到直线l的距离.
(Ⅰ)试判断点P的轨迹C的形状,并写出其方程.
(Ⅱ)是否存在过N(-4,-2)的直线m,使得直线m所截得的弦AB恰好被点N所平分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.根据如图所示的伪代码,当输入a,b分别为3,5时,最后输出的m的值是5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知m,n是两条不重合的直线,α,β,γ是三个两两不重合的平面,给出下列四个命题:
①若m⊥α,m⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若m?α,n?β,m∥n,则α∥β;
④若m,n是异面直线,m?α,m∥β,n∥α,则α∥β.
其中真命题是(  )
A.①和④B.①和③C.③和④D.①和②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点A,B,C,D在边长为1的方格点图的位置如图所示,则向量$\overrightarrow{AD}$在$\overrightarrow{AB}$方向上的投影为(  )
A.-$\frac{\sqrt{5}}{5}$B.-1C.-$\frac{2\sqrt{13}}{13}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.数列{an}为正项等比数列,若a3=3,且an+1=2an+3an-1(n∈N,n≥2),则此数列的前5项和S5等于(  )
A.$\frac{121}{3}$B.41C.$\frac{119}{3}$D.$\frac{241}{9}$

查看答案和解析>>

同步练习册答案