精英家教网 > 高中数学 > 题目详情
20.计算sin5°cos55°-cos175°sin125°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 利用诱导公式以及两角和与差的三角函数化简求解即可.

解答 解:sin5°cos55°-cos175°sin125°
=sin5°cos55°+cos5°sin55°
=sin60°
=$\frac{\sqrt{3}}{2}$.
故选:D.

点评 本题考查两角和与差的三角函数,诱导公式的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为$\frac{1}{7}$,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,…,取后不放回,直到两人中有一人取到白球时即终止,在每一次摸球时袋中每个球被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.
(1)求甲取到白球的概率;
(2)求随机变量ξ的概率分布及均值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2+(a+8)x+a2+a-12(a<0),且f(a2-4)=f(2a-8),则$\frac{{f(n)-{n^2}-a}}{{n-2\sqrt{2}}}(n∈{N^*})$的最大值为(  )
A.$48+32\sqrt{2}$B.$10+5\sqrt{2}$C.$96+64\sqrt{2}$D.$-6-6\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是(  )
A.x+2y-3=0B.x-y-3=0C.x+2y+3=0D.x-y+3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知离散型随机变量X服从二项分布X~B(n,p)且E(X)=12,D(X)=3,则n与p的值分别为(  )
A.$18,\frac{2}{3}$B.$16,\frac{3}{4}$C.$16,\frac{1}{4}$D.$18,\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.喜羊羊家族的四位成员与灰太狼、红太狼进行谈判,通过谈判他们握手言和,准备一起照合影像(排成一排).
(1)要求喜羊羊家族的四位成员必须相邻,有多少种排法?
(2)要求灰太狼、红太狼不相邻,有多少种排法?
(3)记灰太狼和红太狼之间的喜羊羊家族的成员个数为ξ,求ξ的概率分布.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a1=1,an+1=2an+1.
(1)证明数列{an+1}为等比数列;
(2)若数列{bn}满足b1=a1,$\frac{b_n}{a_n}=\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{n-1}}}}(n≥2,n∈{N^*})$.
①求bn+1an-(bn+1)an+1的值;
②求证:$(1+{b_1})(1+{b_2})•…•(1+{b_n})<\frac{10}{3}{b_1}•{b_2}•…•{b_n}(n∈{N^*})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线x2=2py(p>0)的焦点为F(0,1),A,B为抛物线上不重合的两动点,A,B的中点Q,O为坐标原点,$\overrightarrow{OA}.\overrightarrow{OB}=-4$,过A,B作抛物线的切线l1,l2,直线l1,l2交于点M;
(1)求抛物线的方程;
(2)问:直线AB是否过定点,若是,求出定点坐标,若不是,说明理由;
(3)求线段QM距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,A=60°,b=1,c=4,则$\frac{a}{sinA}$=$\frac{{2\sqrt{39}}}{3}$.

查看答案和解析>>

同步练习册答案