精英家教网 > 高中数学 > 题目详情
8.直线l1,l2是分别经过A(1,1),B(0,-1)两点的两条平行直线,当l1,l2间的距离最大时,直线l1的方程是(  )
A.x+2y-3=0B.x-y-3=0C.x+2y+3=0D.x-y+3=0

分析 由题意可得,l1,l2间的距离最大时,AB和这两条直线都垂直.利用斜率计算公式及其相互垂直的直线斜率之间的关系即可得出.

解答 解:由题意可得,l1,l2间的距离最大时,AB和这两条直线都垂直.
由于AB的率为 $\frac{1+1}{1-0}$=2,故直线l1的斜率为-$\frac{1}{2}$,
故它的方程是 y-1=-$\frac{1}{2}$(x-1),化简为 x+2y-3=0,
故选:A.

点评 本题考查了斜率计算公式及其相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.命题“若x=2,则x2-5x+6=0”的逆命题、否命题与逆否命题中,假命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知F1、F2分别是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,以线段F1F2为边作正三角形F1MF2,如果线段MF1的中点在双曲线的渐近线上,则该双曲线的离心率e等于(  )
A.2$\sqrt{3}$B.2$\sqrt{2}$C.$\sqrt{6}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合M={x|x2-3x+2=0},N={-2,-1,1,2},则M∩N={1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且满足(2b-a)•cosC=c•cosA.
(I)求角C的大小;
(II)求sinA+sinB的最大值,并判断此时△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>2;
(2)若函数f(x)≥m恒成立,求m的最大整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.计算sin5°cos55°-cos175°sin125°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.袋子中装有大小相同的八个小球,其中白球五个,分别编号1、2、3、4、5;红球三个,分别编号1、2、3,现从袋子中任取三个小球,它们的最大编号为随机变量X,则P(X=3)等于(  )
A.$\frac{5}{28}$B.$\frac{1}{7}$C.$\frac{15}{56}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上点到直线x+2y-10=0的距离最小值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\sqrt{5}$C.$\frac{6\sqrt{5}}{5}$D.0

查看答案和解析>>

同步练习册答案