精英家教网 > 高中数学 > 题目详情
10.在△ABC中,A=60°,b=1,c=4,则$\frac{a}{sinA}$=$\frac{{2\sqrt{39}}}{3}$.

分析 利用余弦定理求出a,即可求解.

解答 解:∵A=60°,b=1,c=4,
由余弦定理:cosA=$\frac{{c}^{2}+{b}^{2}-{a}^{2}}{2bc}$,
可得:a=$\sqrt{13}$.
∴$\frac{a}{sinA}$=$\frac{\sqrt{13}}{sin60°}=\frac{2\sqrt{39}}{3}$.
故答案为:$\frac{2\sqrt{39}}{3}$.

点评 本题主要考查了余弦定理的运用和计算能力.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.计算sin5°cos55°-cos175°sin125°的结果是(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x∈N|0≤x≤4},则下列说法正确的是(  )
A.0∉AB.1⊆AC.$\sqrt{2}⊆A$D.3∈A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1上点到直线x+2y-10=0的距离最小值为(  )
A.$\frac{\sqrt{5}}{5}$B.$\sqrt{5}$C.$\frac{6\sqrt{5}}{5}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知$cos(x+\frac{π}{4})=\frac{7}{25}$,x∈(0,π),则sinx=$\frac{{17\sqrt{2}}}{50}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.正方形ABCD,沿对角线BD折成直二面角A-BD-C,则折后的异面直线AB与CD所成的角的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n×1×3×…×(2n-1)(n∈N*)时,从n=k(k∈N*)到n=k+1时左边需增乘的代数式是(  )
A.2k+1B.2(2k+1)C.$\frac{2k+1}{k+1}$D.$\frac{2k+3}{k+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.圆C1:x2+y2-4x-2y+1=0与圆C2:x2+y2+4x-8y+11=0的位置关系为(  )
A.相交B.相离C.外切D.内切

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{1}{2}$,且过点$E({1,\frac{3}{2}})$.
(1)求椭圆C的方程;
(2)若点A,B分别是椭圆的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值.

查看答案和解析>>

同步练习册答案