精英家教网 > 高中数学 > 题目详情
5.已知$cos(x+\frac{π}{4})=\frac{7}{25}$,x∈(0,π),则sinx=$\frac{{17\sqrt{2}}}{50}$.

分析 由已知求得$x+\frac{π}{4}$的范围,进一步求出sin(x+$\frac{π}{4}$)的值,再由sinx=sin[(x+$\frac{π}{4}$)-$\frac{π}{4}$]展开两角差的正弦得答案.

解答 解:∵x∈(0,π),∴$x+\frac{π}{4}$∈($\frac{π}{4},\frac{5π}{4}$),
又$cos(x+\frac{π}{4})=\frac{7}{25}$,∴$x+\frac{π}{4}$∈($\frac{π}{4},\frac{π}{2}$).
则sin(x+$\frac{π}{4}$)=$\sqrt{1-co{s}^{2}(x+\frac{π}{4})}=\sqrt{1-(\frac{7}{25})^{2}}=\frac{24}{25}$.
∴sinx=sin[(x+$\frac{π}{4}$)-$\frac{π}{4}$]=sin(x+$\frac{π}{4}$)cos$\frac{π}{4}$-cos(x+$\frac{π}{4}$)sin$\frac{π}{4}$
=$\frac{24}{25}×\frac{\sqrt{2}}{2}-\frac{7}{25}×\frac{\sqrt{2}}{2}=\frac{17\sqrt{2}}{50}$.
故答案为:$\frac{17\sqrt{2}}{50}$.

点评 本题考查三角函数的化简求值,关键是“拆角配角”思想的应用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知离散型随机变量X服从二项分布X~B(n,p)且E(X)=12,D(X)=3,则n与p的值分别为(  )
A.$18,\frac{2}{3}$B.$16,\frac{3}{4}$C.$16,\frac{1}{4}$D.$18,\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知${\vec e_1}$,${\vec e_2}$是同一平面内两个单位向量,其夹角为60°,如果$\vec a$=2${\vec e_1}$+${\vec e_2}$,$\overrightarrow b$=-3${\vec e_1}$+2${\vec e_2}$.
(1)求$\vec a•\vec b$
(2)求$\vec a$与$\vec b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知在四棱锥P-ABCD中,PA丄底面ABCD,底面ABCD是正方形,PA=AB=2,在该四棱锥内部或表面任取一点O,则三棱锥O-PAB的体积不小于$\frac{2}{3}$的概率为(  )
A.$\frac{1}{3}$B.$\frac{5}{16}$C.$\frac{4}{15}$D.$\frac{3}{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某市调研考试后,某校对甲乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀,统计成绩后,得到如下的列联表,且已知甲、乙两个班全部110人中随机抽取1人为优秀的概率为$\frac{3}{11}$
 优秀 非优秀 合计 
甲  10  
 乙 30  
 合计  110 
(1)请完成上面的列联表;
(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名同学从2到10进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求9号或10号概率.
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
独立性检验临界值
P(K2≥k0) 0.10 0.050 0.025 0.010 0.001 
k0 2.706  3.841 5.024 6.63510.828 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,A=60°,b=1,c=4,则$\frac{a}{sinA}$=$\frac{{2\sqrt{39}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图,在圆内随机撒一把豆子,统计落在其内接正方形中的豆子数目,若豆子总数为n,落在正方形内的豆子数为m,则圆周率π的估算值是(  )
A.$\frac{n}{m}$B.$\frac{2n}{m}$C.$\frac{3n}{m}$D.$\frac{2m}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.“雷神”火锅为提高销售业绩,委托我校同学研究气温对营业额的影响,并提供了一份该店在3月份中5天的日营业额y(千元)与当日最低气温x(℃)的数据,如表:
x258911
y1210887
(Ⅰ)请你求出y关于x的回归方程$\hat y=\hat bx+\hat a$;
(Ⅱ)若4月份某天的最低气温为13摄氏度,请预测该店当日的营业额.
【参考公式】$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x),g(x)在[a,b]上可导,且f'(x)>g'(x),则当a<x<b时有(  )
A.f(x)>g(x)B.f(x)<g(x)C.f(x)+g(b)>g(x)+f(b)D.f(x)+g(a)>g(x)+f(a)

查看答案和解析>>

同步练习册答案