精英家教网 > 高中数学 > 题目详情
6.如图,已知扇形AOP的半径为1,圆心角大小为$\frac{π}{3}$,等腰梯形ABCD是扇形AOP的内接梯形,顶点C,D分别在OP,OA上.顶点B在弧AP上,设∠AOB=θ.
(1)求出用θ表示等腰梯形ABCD的面积S的函数关系式;
(2)是否存在面积为$\frac{\sqrt{3}}{6}$的等腰梯形ABCD,若存在,求出此时梯形的高,若不存在,请说明理由.

分析 (1)利用已知条件,求出梯形的底边与高的长度,然后表示出梯形的面积.
(2)通过面积的值,求解正弦函数值,也就是梯形的高.推出结果即可.

解答 解:(1)作BF⊥AD于F,CE⊥A于E,
则OF=cosθ,BF=sinθ,AF=1-cosθ,BC=OF-OE=cosθ-$\frac{sinθ}{tan\frac{π}{3}}$=cosθ-$\frac{\sqrt{3}}{3}sinθ$,
AD=BC+2AF=cosθ-$\frac{\sqrt{3}}{3}sinθ$+2(1-cosθ)=2-cosθ-$\frac{\sqrt{3}}{3}sinθ$,
S=$\frac{AD+CB}{2}×BF$=$\frac{(cosθ-\frac{\sqrt{3}}{3}sinθ+2-cosθ-\frac{\sqrt{3}}{3}sinθ)}{2}×sinθ$
=$(1-\frac{\sqrt{3}}{3}sinθ)sinθ$.$θ∈(0,\frac{π}{3})$.
(2)存在面积为$\frac{\sqrt{3}}{6}$的等腰梯形ABCD,可得$(1-\frac{\sqrt{3}}{3}sinθ)sinθ=\frac{\sqrt{3}}{6}$,
可得-$\frac{\sqrt{3}}{3}{sin}^{2}θ+sinθ-\frac{\sqrt{3}}{6}=0$,
即:${2sin}^{2}θ-2\sqrt{3}sinθ+1=0$,
解得sin$θ=\sqrt{3}-1$,sinθ=$\sqrt{3}+1$(舍去).
此时梯形的高:$\sqrt{3}-1$.

点评 本题考查函数的几何中的应用,三角函数的应用,三角方程的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{1}{2}$x2+lnx+(1-b)x+a,且f(x)的图象过点(1,$\frac{3}{2}$-b).
(1)若函数f(x)存在单调递减区间,求实数b的取值范围;
(2)设x1,x2(x1<x2)是函数f(x)的两个极值点,若b≥$\frac{7}{2}$,求f(x1)-f(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}满足an +an+1 =$\frac{1}{2}$•(-1)n+1(n∈N*),a1=-$\frac{1}{2}$,Sn是数列{an}的前n项和.则S2015=-504.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.判断下列函数的奇偶性:
(1)f(x)=$\frac{1}{{x}^{2}+2}$;
(2)f(x)=$\frac{1}{{x}^{3}-x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在不等边△ABC中,a是最长边,若a2<b2+c2,则A的取值范围60°<A<90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)由0,1,2,3,4,5这6个数字组成没有重复数字的六位数,求其中数字0与1相邻且数字2与3不相邻的六位数的个数;
(2)已知在($\sqrt{x}+\frac{1}{{2}^{4}\sqrt{x}}$)n展开式中,前三项的系数成等差数列,求(2x+1)n-3(x${\;}^{2}-\frac{2}{x}+\frac{1}{{x}^{4}}$)展开式中含x2的项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设i为虚数单位,则复数2-i的模为(  )
A.$\sqrt{5}$B.$\sqrt{3}$C.3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)是二次函数,不等式f(x)<0的解集是(0,5),且f(x)在区间[-1,4]上的最大值是12.
(1)求f(x)的解析式;
(2)求使f(x)>2m-1在区间x∈[-1,4]上恒成立的m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.根据下列条件,判断△ABC有没有解,若有解,判断解的个数.
(1)a=5,b=4,A=120°;
(2)a=5,b=4,A=90°;
(3)a=10$\sqrt{6}$,b=20$\sqrt{3}$,A=45°;
(4)a=20$\sqrt{2}$,b=20$\sqrt{3}$,A=45°;
(5)a=4,b=$\frac{10\sqrt{3}}{3}$,A=60°.

查看答案和解析>>

同步练习册答案