精英家教网 > 高中数学 > 题目详情
4.已知集合P={1,2},Q={z|z=x-y,x,y∈P},则集合Q等于(  )
A.{2,3,4}B.{-1,0,1}C.{-1,1}D.{0,1}

分析 根基运算和集合的关系,即可求出.

解答 解:∵集合P={1,2},Q={z|z=x-y,x,y∈P},
∴x-y=1-1=0,2-2=0,1-2=-1,2-1=1,
∴集合Q={-1,0,1},
故选:B.

点评 本题考查了元素和集合的关系,以及集合的表示方法,掌握集合的特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{y≥3x-6}\\{x+y≥2}\end{array}\right.$,则目标函数z=2x+y的最小值为(  )
A.9B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+ax+b,g(x)=lnx.
(1)记F(x)=f(x)-g(x),求F(x)在[1,2]的最大值;
(2)记G(x)=$\frac{f(x)}{g(x)}$,令a=-4m,b=4m2(m∈R),当0<m<$\frac{1}{2}$时,若函数G(x)的3个极值点为x1,x2,x3(x1<x2<x3),
(ⅰ)求证:0<2x1<x2<1<x3
(ⅱ)讨论函数G(x)的单调区间(用x1,x2,x3表示单调区间).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知集合M={x|x2+3x=4},N={0,1,2},则M∩N=(  )
A.B.{1}C.{0}D.{2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.利用演绎推理的“三段论”可得到结论:函数f(x)=lg$\frac{1-x}{1+x}$的图象关于坐标原点对称,那么,这个三段论的小前提是(  )
A.f(x)是增函数B.f(x)是减函数C.f(x)是奇函数D.f(x)是偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间(1,2)内随机取一个实数a,则直线y=2x,直线x=a与x轴围成的面积大于$\frac{9}{4}$的概率是(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}的首项为a1=1,且其前n项和Sn满足Sn+1=Sn+4n+1,n∈N*
(1)求Sn的表达式,并令bn=$\frac{{S}_{n}}{n+p}$.求非零常数p的值,使得数列{bn}是等差数列;
(2)在(1)的条件下,设cn=$\frac{1}{{b}_{n}{b}_{n+1}}$.Tn是数列{cn}的前n项和,且Tn<m时对所有n∈N*都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若等差数列{an}的首项${a_1}=C_{5m}^{11-2m}-A_{11-3m}^{2m-2}(m∈{N^*})$,公差是${(\frac{5}{2x}-\frac{2}{5}\root{3}{x^2})^n}$的展开式中的常数项,其中n为7777-15除以19的余数,则等差数列{an}的通项公式an=-4n+104.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.角α的终边上有一点(1,-2),则sinα=(  )
A.-$\frac{{\sqrt{5}}}{5}$B.-$\frac{2}{5}\sqrt{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{2}{5}\sqrt{5}$

查看答案和解析>>

同步练习册答案