精英家教网 > 高中数学 > 题目详情
14.角α的终边上有一点(1,-2),则sinα=(  )
A.-$\frac{{\sqrt{5}}}{5}$B.-$\frac{2}{5}\sqrt{5}$C.$\frac{{\sqrt{5}}}{5}$D.$\frac{2}{5}\sqrt{5}$

分析 由条件利用任意角的三角函数的定义,求得sinα的值.

解答 解:由题意可得x=1,y=-2,r=$\sqrt{5}$,
∴sinα=$\frac{y}{r}$=-$\frac{2}{\sqrt{5}}$=-$\frac{2\sqrt{5}}{5}$,
故选:B.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知集合P={1,2},Q={z|z=x-y,x,y∈P},则集合Q等于(  )
A.{2,3,4}B.{-1,0,1}C.{-1,1}D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,已知sinA=2sinB•cosC,且(a+b+c)(b+c-a)=3bc,则△ABC为(  )
A.等边三角形B.钝角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tan$α=\frac{3}{4}$,α∈[$π,\frac{3}{2}π$],则cosα的值是-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知各项均为正数的数列{an}的前n项和Sn满足Sn>1且6Sn=(an+1)(an+2),n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项的和为bn=-an+19,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知α是第一象限角,f(α)=$\frac{sin(π-α)•cos(2π-α)•tan(-α-π)}{tan(-α)•sin(-π-α)}$.
(1)化简f(α);
(2)若α=-1020°,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f1(x)=sinx,fn(x)=f′n-1(x),n≥2,则$\sum_{i=1}^{2008}{{f_i}(0)=}$0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.${(2x-\frac{1}{2})^6}$展开式中x2的系数为$\frac{15}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow{OA}$=(2,1),$\overrightarrow{OB}$=(1,7),$\overrightarrow{OC}$=(5,1),若$\overrightarrow{OD}$=x•$\overrightarrow{OA}$,y=$\overrightarrow{DB}$•$\overrightarrow{DC}$(x、y∈R).
(1)求y=f(x)的解析式;
(2)求y=f(x)的图象按向量$\overrightarrow{a}$=(-2,8)平移后得到的图象y=g(x)的解析式;
(3)过原点O作OM、ON分别交于y=g(x)的图象于M、N两点,直线MN交y轴于点Q(0,y0),当∠MON为锐角时,求y0的取值范围.

查看答案和解析>>

同步练习册答案