分析 求函数的导数,得到得fn+4(x)=fn(x),利用函数的周期性进而可求出答案
解答 解:∵(sinx)′=cosx,(cosx)′=-sinx,(-sinx)′=-cosx,(-cosx)′=sinx,
∴fn+4(x)=fn(x),n∈N*,
即函数fn(x)是周期为4的周期函数,
且f1(x)+f2(x)+f3(x)+f4(x)=sinx+cosx-sinx-cosx=0,
则$\sum_{i=1}^{2008}{{f_i}(0)=}$502(f1(x)+f2(x)+f3(x)+f4(x))=502×0=0,
故答案为:0
点评 本题考查了三角函数的导数,理解三角函数的导函数具有周期性是解决此问题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{{\sqrt{5}}}{5}$ | B. | -$\frac{2}{5}\sqrt{5}$ | C. | $\frac{{\sqrt{5}}}{5}$ | D. | $\frac{2}{5}\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分非必要条件 | B. | 必要非充分条件 | ||
| C. | 充要条件 | D. | 既非充分也非必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 10×219 | C. | -10×218 | D. | -3×218 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-2] | B. | (-∞,-2) | C. | [1,+∞) | D. | (-∞,-2)∪[1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com