精英家教网 > 高中数学 > 题目详情
17.在△ABC中,角A、B、C所对的边分别为a、b、c,且a=4$\sqrt{2}$,b=4$\sqrt{3}$,A=45°,求角B的大小.

分析 运用正弦定理,可得sinB,结合A=45°,以及内角和定理,可得角B.

解答 解:根据正弦定理可知$\frac{a}{sinA}=\frac{b}{sinB}$,
∴$sinB=\frac{bsinA}{a}=\frac{{4\sqrt{3}•sin{{45}°}}}{{4\sqrt{2}}}=\frac{{\sqrt{3}}}{2}$,
∵B∈(0°,180°),且A=45°,
∴∠B=60°或120°,
故角B的大小为60°或120°.

点评 本题考查正弦定理的运用,同时考查特殊角的三角函数值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知抛物线y2=2x,过焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲、乙两人各进行3次射击,甲每次击中目标的概率为$\frac{1}{2}$,乙每次击中目标的概率为$\frac{2}{3}$.
(1)记甲击中目标的次数为X,求X的概率分布列及数学期望E(X);
(2)求乙至多击中目标2次的概率;  
 (3)求甲恰好比乙多击中目标2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,已知sinA=2sinB•cosC,且(a+b+c)(b+c-a)=3bc,则△ABC为(  )
A.等边三角形B.钝角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.若函数$f(x)=({1+\frac{1}{tanax}}){sin^2}ax-2sin({ax+\frac{π}{4}})sin({ax-\frac{π}{4}})$(a>0)的图象与直线y=m相切,相邻切点之间的距离为$\frac{π}{2}$.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈[0,$\frac{π}{2}$],求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tan$α=\frac{3}{4}$,α∈[$π,\frac{3}{2}π$],则cosα的值是-$\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知各项均为正数的数列{an}的前n项和Sn满足Sn>1且6Sn=(an+1)(an+2),n∈N*
(1)求数列{an}的通项公式;
(2)若数列{bn}的前n项的和为bn=-an+19,求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f1(x)=sinx,fn(x)=f′n-1(x),n≥2,则$\sum_{i=1}^{2008}{{f_i}(0)=}$0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知P是椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$上的一个动点,F1,F2分别是左右焦点,则cos∠F1PF2的最小值为$-\frac{1}{9}$.

查看答案和解析>>

同步练习册答案