精英家教网 > 高中数学 > 题目详情

如图,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至
A′CD,使点A'与点B之间的距离A′B=
3

(1)求证:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求异面直线A′C与BD所成的角的余弦值.
(本小题满分12分)
解(1)∵CD⊥AB,∴CD⊥A′D,CD⊥DB,∴CD⊥平面A′BD,
∴CD⊥BA′.又在△A′DB中,A′D=1,DB=2,A′B=
3
,∴∠BA′D=90°,
即BA′⊥A′D,∴BA′⊥平面A′CD.-------------------------(4分)
(2)∵CD⊥DB,CD⊥A′D,∴∠BDA′是二面角
A′-CD-B的平面角.又Rt△A′BD中,A′D=1,BD=2,
∴∠A′DB=60°,即二面角A′-CD-B为60°.---------(8分)
(3)过A′作A′EBD,在平面A′BD中作DE⊥A′E于E,
连CE,则∠CA′E为A′C与BD所成角.
∵CD⊥平面A′BD,DE⊥A′E,∴A′E⊥CE.
∵EA′AB,∠A′DB=60°,∴∠DA′E=60°,又A′D=1,∠DEA′=90°,∴A′E=
1
2

又∵在Rt△ACB中,AC=
AD•AB
=
3
∴A′C=AC=
3

∴cos∠CA′E=
A′E
A′C
=
1
2
3
=
3
6
,即A′C与BD所成角的余弦值为
3
6
.---------(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC-A1B1C1中,CA=CB=CC1=2,∠ACB=90°,E、F分别是BA、BC的中点,G是AA1上一点,且AC1⊥EG.
(Ⅰ)确定点G的位置;
(Ⅱ)求直线AC1与平面EFG所成角θ的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正四棱锥P-ABCD中,侧棱PA与底面ABCD所成的角的正切值为
6
2

(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

E是二面角α---l---β的棱上一点,EF?β,EF与l成45°角,与α成30°角,则该二面角的大小为(  )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在平面直角坐标系中,A(-2,3),B(3,-2),沿x轴把平面直角坐标系折成120°的二面角后,则线段AB的长度为(  )
A.
2
B.2
11
C.3
2
D.4
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,侧面PDC是边长2的正三角形且与底面ABCD垂直,底面ABCD是面积为2
3
的菱形,∠ADC为锐角.
(1)求证:PA⊥CD
(2)求二面角P-AB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面ABCD是菱形,SA=SD=
39
AD=2
3
,且S-AD-B大小为120°,∠DAB=60°.
(1)求异面直线SA与BD所成角的正切值;
(2)求证:二面角A-SD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD和ABEF都是边长为1的正方形,AM=FN,现将两个正方形沿AB折成一个直二面角,O∈AB,平面MON平面CBE.

(1)求角MON大小;
(2)设AO=x,当x为何值时,三棱锥A-MON的体积V最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求二面角A1-BC-A的大小;
(3)求CC1到平面A1AB的距离.

查看答案和解析>>

同步练习册答案