精英家教网 > 高中数学 > 题目详情
在四棱锥P-ABCD中,侧面PDC是边长2的正三角形且与底面ABCD垂直,底面ABCD是面积为2
3
的菱形,∠ADC为锐角.
(1)求证:PA⊥CD
(2)求二面角P-AB-D的大小.
(Ⅰ)过P作PE⊥CD于E连接AE
∵侧面PDC⊥底面ABCD,PE?侧面PDC,且PE⊥CD,
∴PE⊥底面ABCD
∵2×
1
2
AD•DCsin∠ADE=2
3

∠ADC=
π
3

故△ADC是边长为2的等边三角形
∵E为DC的中点,∴AE⊥CD
∴PA⊥CD
(Ⅱ)∵PA⊥CD,AE⊥CD,CDAB,∴PA⊥AB.AE⊥AB,
∴∠PAE就是二面角P-AB-D的平面角
∵△ADC和△PDC都是边长为2的正三角形,
∴PE=AE,又∵PE⊥AE,
∴∠APE=45°即二面角P-AB-D的大小为45°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,平面四边形ABCD中,∠BAD=∠BCD=90°,∠ABD=60°,∠CBD=45°,将△ABD沿对角线BD折起,得四面体ABCD,使得点A在平面BCD上的射影在线段BC上,设AD与平面BCD所成角为θ,则sinθ=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在矩形ABCD中,AB=3,AD=4,PA⊥平面ABCD,PA=
4
5
3
,那么二面角A-BD-P的大为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角,则折起后∠ADC的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


如图,已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至
A′CD,使点A'与点B之间的距离A′B=
3

(1)求证:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求异面直线A′C与BD所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α与平面β相交成一个锐二面角θ,平面α上的一个圆在平面β上的射影是一个离心率为
1
2
的椭圆,则θ等于(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知△ABC中,∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使A′B=
3

(1)求证:BA′⊥面A′CD;
(2)求异面直线A′C与BD所成角的余弦值.
(3)(理科做)求二面角A′-CD-B的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平行四边形ABCD中,AB=3,AD=5,DB=4,以BD为棱把四边形ABCD折成1200的二面角,则AC的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2
2
,∠ACB=90°,M是AA1的中点,N是BC1的中点
(1)求证:MN平面A1B1C1
(2)求点C1到平面BMC的距离;
(3)求二面角B-C1M-A1的平面角的余弦值大小.

查看答案和解析>>

同步练习册答案