精英家教网 > 高中数学 > 题目详情
将正方形ABCD沿对角线BD折成直二面角,则折起后∠ADC的大小为______.
AD=DC=AB=BC=a,
取AC的中点E,连接DE,BE,DE=BE=
2
2
a.
∵ABCD是正方形,∴EB⊥AC,ED⊥AC,
∴∠BED为二面角B-AC-D的平面角,∴∠BED=90°
∴BD=
DE2+BE2
=a.
所以三角形ADC是正三角形,
所以∠ADC=60°.
故答案为:60°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.
(Ⅰ)求证:BD⊥AC;
(Ⅱ)求直线CA与平面ABD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是侧棱长为
5
的等腰三角形,则二面角V-AB-C的平面角为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,
(1)求二面角α-l-β的大小
(2)求证:MN⊥AB
(3)求异面直线PA和MN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

E是二面角α---l---β的棱上一点,EF?β,EF与l成45°角,与α成30°角,则该二面角的大小为(  )
A.45°B.30°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
6

E为PC的中点.
(1)求二面角E-AD-C的正切值;
(2)在线段PC上是否存在一点M,使PC⊥平面MBD成立?若存在,求出MC的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥P-ABCD中,侧面PDC是边长2的正三角形且与底面ABCD垂直,底面ABCD是面积为2
3
的菱形,∠ADC为锐角.
(1)求证:PA⊥CD
(2)求二面角P-AB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥S-ABC中,AB⊥BC,AB=BC=
2
,SA=SC=2,二面角S-AC-B的余弦值是
3
3
,若S、A、B、C都在同一球面上,则该球的表面积是______.

查看答案和解析>>

同步练习册答案