精英家教网 > 高中数学 > 题目详情
已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.
(Ⅰ)求证:BD⊥AC;
(Ⅱ)求直线CA与平面ABD所成角的大小.
(Ⅰ)证明:∵AD=DC,∠ADB=∠CDB=120°,BD=BD
∴△ADB≌△CDB
∴AB=BC,取AC中点M,
则MB⊥AC,DM⊥AC
∴AC⊥平面BDM,
∴AC⊥BD.
(Ⅱ)过点C作CH⊥BD交BD延长线于H,连结HA,
∵平面ABD⊥平面BCD,∴CH⊥平面BAD,
∴∠CAH为CA与平面BAD所成角,
∵DC=AD,∠ADH=∠CDH=60°,DH=DH,
∴△HAD≌△CDHk,
∴AH=HC
∴在Rt△HAC中,∠HAC=45°
∴直线CA与平面ABD所成角的大小为45°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知a和b是成60°角的两条异面直线,则过空间一点且与a和b都成60°角的直线共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示的四棱锥,SD垂直于正方形ABCD所在的底面,AB=1,SB=
3

(1)求证:BC⊥SC;
(2)求SB与底面ABCD所成角的正切值;
(3)设棱SA的中点为M,求异面直线DM与SC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知三棱柱ABC-A1B1C1的侧棱长与底面边长都等于1,A1在底面ABC上的射影D为BC的中点,则侧棱AA1与底面ABC所成角的大小为______,此三棱柱的体积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正四棱锥S-ABCD中,O为顶点在底面上的射影,P为侧棱SD的中点,且SO=OD,则直线BC与平面PAC所成的角是 ______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知正方体ABCD-A1B1C1D1,O是底ABCD对角线的交点.求证:
(1)C1O面A1B1D1
(2)A1C⊥面AB1D1
(3)求直线AC与平面AB1D1所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平面四边形ABCD中,∠BAD=∠BCD=90°,∠ABD=60°,∠CBD=45°,将△ABD沿对角线BD折起,得四面体ABCD,使得点A在平面BCD上的射影在线段BC上,设AD与平面BCD所成角为θ,则sinθ=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,将一副三角板拼接,使它们有公共边BC,且使两个三角形所在的平面互相垂直,若∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.
(1)求证:平面ABD⊥平面ACD;
(2)求二面角A-CD-B的平面角的正切值;
(3)求异面直线AD与BC间的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角,则折起后∠ADC的大小为______.

查看答案和解析>>

同步练习册答案