精英家教网 > 高中数学 > 题目详情
已知a和b是成60°角的两条异面直线,则过空间一点且与a和b都成60°角的直线共有(  )
A.1条B.2条C.3条D.4条
把异面直线a,b平移到相交,使交点为P,
此时∠APB=60°,过P点作直线a,b相交所成角的两条角平分线c,d,如图所示:
若存在其它直线与a,b都成60°角,则直线在该平面上的射影为c或d
∵d与a,b都成60°角,则在平面上射影为d的直线只有直线d一条,
∵c与a,b都成30°角,由三余弦定理,当直线与c夹角的余弦为
3
3
时,满足条件,这样的直线共有2条,
故过空间一点且与a和b都成60°角的直线共有3条
故选C
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

直三棱柱ABC-A1B1C1中,CA=CC1=2CB,∠ACB=90°,则直线BC1与直线AB1夹角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正四面体A-BCD(空间四边形的四条边长及两对角线的长都相等)中,E,F分别是棱AD,BC的中点,则EF和AC所成的角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体ABCD-A1B1C1D1中,P为面ADD1A1的中心,Q为DCC1D1的中心,则向量
PB
QA1
夹角的余弦值为(  )
A.
6
6
B.-
6
6
C.
1
6
D.-
1
6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正四棱锥P-ABCD的底面积为3,体积为
2
2
,E为侧棱PC的中点,则PA与BE所成的角为(  )
A.
π
6
B.
π
3
C.
π
4
D.
π
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD中,M,N分别是AB和CD的中点,AD=BC=6,MN=3
2
,则AD和BC所成的角是(  )
A.120°B.90°C.60°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知某几何体的直观图和三视图如图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.

(1)求证:BN⊥平面C1B1N;
(2)设θ为直线C1N与平面CNB1所成的角,求sinθ的值;
(3)设M为AB中点,在BC边上求一点P,使MP平面CNB1,求
BP
PC
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三角形PAD,正方形ABCD,平面PAD⊥平面ABCD,E为PD的中点.
(1)求证:CD⊥AE;
(2)求证:AE⊥平面PCD;
(3)求直线AC与平面PCD所成的角的大小的正弦..

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四面体ABCD,AD=CD,∠ADB=∠CDB=120°,且平面ABD⊥平面BCD.
(Ⅰ)求证:BD⊥AC;
(Ⅱ)求直线CA与平面ABD所成角的大小.

查看答案和解析>>

同步练习册答案