精英家教网 > 高中数学 > 题目详情
如图,正方体ABCD-A1B1C1D1中,P为面ADD1A1的中心,Q为DCC1D1的中心,则向量
PB
QA1
夹角的余弦值为(  )
A.
6
6
B.-
6
6
C.
1
6
D.-
1
6

设正方体的棱长为2,建立空间直角坐标系如图:
则:B(2,2,0),A1(2,0,2),P(1,0,1),Q(0,1,1),
PB
=(1,2,-1);
QA1
=(2,-1,1),
∴cos
PB
A1Q
=
PB
A1Q
|
PB
||
A1Q
|
=
2-2-1
6
×
6
=-
1
6

∴向量
PB
QA1
夹角的余弦值为-
1
6

故选D.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知P为△ABC所在平面外的一点,PC⊥AB,PC=AB=2,E、F分别为PA和BC的中点
(1)求EF与PC所成的角;
(2)求线段EF的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正三棱柱ABC-A1B1C1中,若AB=
2
,BB1=1,则AB1与C1B所成角的大小为(  )
A.60°B.90°C.105°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四面体ABCD中,O.E分别为BD.BC的中点,且CA=CB=CD=BD=2,AB=AD=
2

(1)求证:AO⊥平面BCD;
(2)求异面直线AB与CD所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在棱长为1的正方体ABCD-A1B1C1D1中,M和N分别为A1B1和BB1的中点,那么直线AM与CN所成角的余弦值是(  )
A.
3
2
B.
10
10
C.
3
5
D.
2
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

异面直线a,b所成的角为60°,过空间点P作线c与它们都成60°,则线c的条数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a和b是成60°角的两条异面直线,则过空间一点且与a和b都成60°角的直线共有(  )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理)如图,单位正方体ABCD-A1B1C1D1,E,F分别是棱C1D1和B1C1的中点,试求:
(Ⅰ)AF与平面BEB1所成角的余弦值;
(Ⅱ)点A到面BEB1的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知三棱柱ABC-A1B1C1的侧棱长与底面边长都等于1,A1在底面ABC上的射影D为BC的中点,则侧棱AA1与底面ABC所成角的大小为______,此三棱柱的体积为______.

查看答案和解析>>

同步练习册答案