精英家教网 > 高中数学 > 题目详情
四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其他四个侧面都是侧棱长为
5
的等腰三角形,则二面角V-AB-C的平面角为______.
取AB、CD的中点E、F,连接VE、EF、VF
∵VA=VB=
5

∴△VAB为等腰三角形
∴VE⊥AB
又∵ABCD是正方形,则BC⊥AB
∵EFBC
∴EF⊥AB
∵EF∩VE=E
∴∠VEF为二面角V-AB-C的平面角
∵△VAB≌△VDC∴VE=VF=2
EF=BC=2
∴△VEF为等边三角形
∴∠VEF=60°
即二面角V-AB-C为60°
故答案为:60°
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示的四棱锥,SD垂直于正方形ABCD所在的底面,AB=1,SB=
3

(1)求证:BC⊥SC;
(2)求SB与底面ABCD所成角的正切值;
(3)设棱SA的中点为M,求异面直线DM与SC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平面四边形ABCD中,∠BAD=∠BCD=90°,∠ABD=60°,∠CBD=45°,将△ABD沿对角线BD折起,得四面体ABCD,使得点A在平面BCD上的射影在线段BC上,设AD与平面BCD所成角为θ,则sinθ=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,将一副三角板拼接,使它们有公共边BC,且使两个三角形所在的平面互相垂直,若∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.
(1)求证:平面ABD⊥平面ACD;
(2)求二面角A-CD-B的平面角的正切值;
(3)求异面直线AD与BC间的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,棱柱ABC-AwBwCw中,AwA,AwB,AwC都与平面ABC所成的角相等,∠CAB=90°,AC=AB=AwB=a,D为BC上的点,且AwC平面ADBw.求:
(Ⅰ)AwC与平面ADBw的距离;
(Ⅱ)二面角Aw-AB-C的大小;
(Ⅲ)ABw与平面ABC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在矩形ABCD中,AB=3,AD=4,PA⊥平面ABCD,PA=
4
5
3
,那么二面角A-BD-P的大为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角,则折起后∠ADC的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

平行四边形ABCD中,AB=3,AD=5,DB=4,以BD为棱把四边形ABCD折成1200的二面角,则AC的长为______.

查看答案和解析>>

同步练习册答案