精英家教网 > 高中数学 > 题目详情
如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,
(1)求二面角α-l-β的大小
(2)求证:MN⊥AB
(3)求异面直线PA和MN所成角的大小.
(1)连接PD,∵PA⊥α.∠ADC=90°.
∴∠PDC=90°(三垂线定理).
∠ADP为二面角α-l-β的平面角.
∴△PAD为等腰直角三角形.
∴二面角α-l-β为45°.
(2)设E为DC中点,连接NE,
则NEPD,MEAD.
由面面平行的判定定理得:
平面MEN平面APD.
ABCD
∵CD⊥平面APD
∴AB⊥平面APD
∴AB⊥平面MEN.
∴AB⊥MN.
(3)设F为DP中点.连接AG,GN
则FN=
1
2
DC=AM.FNDCAM.
∴FNMA为平行四边形
则异面直线PA与MN的夹角为∠FAP
∠FAP=
1
2
∠PAD=45°(等腰直角三角形DAP上直角的一半).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

如图,已知三棱柱ABC-A1B1C1的侧棱长与底面边长都等于1,A1在底面ABC上的射影D为BC的中点,则侧棱AA1与底面ABC所成角的大小为______,此三棱柱的体积为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,将一副三角板拼接,使它们有公共边BC,且使两个三角形所在的平面互相垂直,若∠BAC=90°,AB=AC,∠CBD=90°,∠BDC=60°,BC=6.
(1)求证:平面ABD⊥平面ACD;
(2)求二面角A-CD-B的平面角的正切值;
(3)求异面直线AD与BC间的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在矩形ABCD中,AB=3,AD=4,PA⊥平面ABCD,PA=
4
5
3
,那么二面角A-BD-P的大为(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示).
(Ⅰ)求证:AE平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将正方形ABCD沿对角线BD折成直二面角,则折起后∠ADC的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α与平面β相交成一个锐二面角θ,平面α上的一个圆在平面β上的射影是一个离心率为
1
2
的椭圆,则θ等于(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知正三棱柱ABC=A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.
(Ⅰ)当CF=1时,求证:EF⊥A1C;
(Ⅱ)设二面角C-AF-E的大小为θ,求tanθ的最小值.

查看答案和解析>>

同步练习册答案