精英家教网 > 高中数学 > 题目详情
如图多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示).
(Ⅰ)求证:AE平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?
(Ⅰ)证明:由三视图可知:△ABE与△DCF皆为直角三角形,且AB⊥BE,DC⊥CF,
侧面矩形ABCD⊥底面直角梯形BEFC,且BC=
3
,EF=2,∠CEF=90°.
由以上可得:ABCD,BECF.
又AB?平面DCF,DC?平面DCF,∴AB平面DCF;
同理可证BE平面DCF.
又AB∩BE=B,∴平面ABE平面DCF.
∴AE平面DCF.
(Ⅱ)如图所示:
当AB=DC=6时,二面角A-EF-C的大小为60°.下面给出证明:
过点E作EM⊥CF,垂足为M,则EMBC,又BECM,
∴四边形BCME为矩形,∴EM=
3

在Rt△EFM中,sin∠EFM=
EM
EF
=
3
2
,∴∠EFM=60°.
∴∠FEM=30°.
∵∠FEC=90°,∴∠CEM=60°,FE⊥CE.
在Rt△CEM中,CE=
ME
cos60°
=2
3

∵DC⊥BC,平面ABCD⊥平面BCFE,
∴DC⊥平面BCFE,∴DC⊥EF.
又∵DC∩CE=C,∴FE⊥平面DCE,∴FE⊥DE,
∴∠DCE是二面角A-EF-C的平面角,其大小为60°.
在Rt△DCE中,DC=CEtan60°=6=AB.
故当AB的长6时,二面角A-EF-C的大小为60°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在线段AD上,且PG=4,AG=
1
3
GD
,BG⊥GC,BG=GC=2,E是BC的中点.
(1)求异面直线GE与PC所成角的余弦值;
(2)求DG与平面PBG所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知平行六面体ABCD-A1B1C1D1的底面为正方形,O1,O分别为上、下底面中心,且A1在底面ABCD上的射影为O.
(1)求证:平面O1DC⊥平面ABCD;
(2)若点E、F分别在棱AA1、BC上,且AE=2EA1,问F在何处时,EF⊥AD?
(3)若∠A1AB=60°,求二面角C-AA1-B的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是直角梯形的四棱锥P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在二面角α-l-β中,A、B∈α,C、D∈l,ABCD为矩形,p∈β,PA⊥α,且PA=AD,M、N依次是AB、PC的中点,
(1)求二面角α-l-β的大小
(2)求证:MN⊥AB
(3)求异面直线PA和MN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,AC=2PA=4,且平面PAC⊥平面ABC.
(1)求三棱锥P-ABC的体积;
(2)求二面角B-AP-C的余弦值;
(3)判断在线段AC上是否存在点Q,使得△PQB为直角三角形?若存在,找出所有符合要求的点Q,并求
AQ
QC
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
6

E为PC的中点.
(1)求二面角E-AD-C的正切值;
(2)在线段PC上是否存在一点M,使PC⊥平面MBD成立?若存在,求出MC的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,PB=
15
,PD=
3

(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在一个60°的二面角的棱上,有两个点A、B,AC、BD分别是在这个二面角的两个半平面内垂直于AB的线段,且AB=4cm,AC=6cm,BD=8cm,则CD的长为______.

查看答案和解析>>

同步练习册答案