精英家教网 > 高中数学 > 题目详情
如图,在底面是直角梯形的四棱锥P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.
解法一:(Ⅰ)∵PA⊥平面ABCD,BD?平面ABCD,∴BD⊥PA.
tan∠ABD=
AD
AB
=
3
3
tan∠BAC=
BC
AB
=
3

∴∠ABD=30,°∠BAC=60°
∴∠AEB=90°,即BD⊥AC
又PA∩AC=A,
∴BD⊥平面PAC.
(Ⅱ)过E作EF⊥PC,垂足为F,连接DF,
∵DE⊥平面PAC,EF是DF在平面PAC上的射影,由三垂线定理知PC⊥DF,
∴∠EFD为二面角A-PC-D的平面角.
又∠DAC=90°-∠BAC=30°
∴DE=ADsin∠DAC=1,AE=ABsin∠ABE=
3

又AC=4
3

∴EC=3
3
,PC=8.
由Rt△EFCRt△PAC得EF=
PA•EC
PC
=
3
3
2

在Rt△EFD中,tan∠EFD=
DE
EF
=
2
3
9

cos∠EFD=
9
93
93

∴二面角A-PC-D的余弦值为
9
93
93

解法二:(Ⅰ)如图,建立坐标系,则A(0,0,0),B(2
3
,0,0
),C(2
3
,6,0)
,D(0,2,0),P(0,0,4)
AP
=(0,0,4),
AC
=(2
3
,6,0)
BD
=(-2
3
,2,0)

BD
AP
=0,
BD
AC
=0

∴BD⊥AP,BD⊥AC,又PA∩AC=A
∴BD⊥平面PAC.
(Ⅱ)设平面PCD的法向量为
n
=(x,y,1)

CD
n
=0,
PD
n
=0

CD
=(-2
3
,-4,0),
PD
=(0,2,-4)

-2
3
x-4y=0
2y-4=0
,解得
x=-
4
3
3
y=2

n
=(-
4
3
3
,2,1)

平面PAC的法向量取为
m
=
BD
=(-2
3
,2,0)

cos<
n
BD
>=
n
BD
|
n
||
BD
|
=
12
31
3
×4
=
9
93
=
9
93
93

∴二面角A-PC-D的余弦值为
9
93
93

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,正三棱柱ABC-A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成的角的正弦值为(  )
A.
2
2
B.
15
5
C.
6
4
D.
6
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,E为DD1上的点、F为DB的中点.
(Ⅰ)求直线B1F与平面CDD1C1所成角的正弦值;
(Ⅱ)若直线EF平面ABC1D1,试确定点E的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知等边三角形ABC与正方形ABDE有一公共边AB,二面角C-AB-D的余弦值为
3
3
,M是AC的中点,则EM,DE所成角的余弦值等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=2
2
,M为BC的中点.
(1)证明:AM⊥PM;
(2)求二面角P-AM-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(1)求二面角E-AB-D的大小;
(2)求四面体ABDE的表面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示).
(Ⅰ)求证:AE平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四面体A-BCD的四个面全等,且AB=AC=2
3
,BC=4,则以BC为棱,以面BCD与面BCA为面的二面角的大小为(  )
A.arccos
1
3
B.arccos
3
3
C.
π
2
D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在矩形ABCD的边BC上移动.
(Ⅰ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅱ)当CE等于何值时,二面角P-DE-A的大小为45°.

查看答案和解析>>

同步练习册答案