精英家教网 > 高中数学 > 题目详情
如图,四面体A-BCD的四个面全等,且AB=AC=2
3
,BC=4,则以BC为棱,以面BCD与面BCA为面的二面角的大小为(  )
A.arccos
1
3
B.arccos
3
3
C.
π
2
D.
3

取BC的中点为O,连接OA,OD,
因为四面体A-BCD的四个面全等,且AB=AC=2
3
,BC=4,
所以BD=CD=2
3
,AD=4,
所以OA⊥BC,OD⊥BC,
所以∠AOD为所求角.
因为AB=AC=BD=CD=2
3
,BC=4,
所以OA=OD=2
2

在△AOD中,AD=4,
所以cos∠AOD=
OA2+OD2-AD2
2AO•OD
=0,
所以∠AOD=
π
2

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD,PA⊥底面ABCD,ABCD,AB⊥AD,AB=AD=
1
2
CD=2,PA=2,M,E,F分别是PA,PC,PD的中点.
(1)证明:EF平面PAB;
(2)证明:PD⊥平面ABEF;
(3)求直线ME与平面ABEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是直角梯形的四棱锥P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,AC=2PA=4,且平面PAC⊥平面ABC.
(1)求三棱锥P-ABC的体积;
(2)求二面角B-AP-C的余弦值;
(3)判断在线段AC上是否存在点Q,使得△PQB为直角三角形?若存在,找出所有符合要求的点Q,并求
AQ
QC
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD的底面为菱形,且∠ABC=120°,PA⊥底面ABCD,AB=1,PA=
6

E为PC的中点.
(1)求二面角E-AD-C的正切值;
(2)在线段PC上是否存在一点M,使PC⊥平面MBD成立?若存在,求出MC的长;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为a的正方形ABCD沿对角线AC折成一个直二面角,则此时BD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,PB=
15
,PD=
3

(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,SD⊥AB,且AB=2AD,SD=
3
AD,
(1)求证:平面SDB⊥平面ABCD;
(2)求二面角A-SB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于______.

查看答案和解析>>

同步练习册答案