精英家教网 > 高中数学 > 题目详情
正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于______.
如图所示,
正方体ABCD-A1B1C1D1,可得CC1⊥CB,CC1⊥CD,CB∩CD=C.
∴CC1⊥底面ABCD.
又AB⊥BC,∴AB⊥BC1
∴∠CBC1是二面角C1-AB-C的平面角.
由正方形BCC1B1可得∠CBC1=45°
故答案为45°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

如图,四面体A-BCD的四个面全等,且AB=AC=2
3
,BC=4,则以BC为棱,以面BCD与面BCA为面的二面角的大小为(  )
A.arccos
1
3
B.arccos
3
3
C.
π
2
D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在矩形ABCD的边BC上移动.
(Ⅰ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅱ)当CE等于何值时,二面角P-DE-A的大小为45°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以等腰直角三角形ABC斜边BC上的高AD为折痕,将△ABC折成二面角C-AD-B等于______时,在折成的图形中,△ABC为等边三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱柱ABC-A1B1C1的底面为直角三角形,则棱与底面垂直,如图所示,D是棱CC1的中点,且∠ACB=90°,BC=1,AC=
3
,AA1=
6

(Ⅰ)证明:A1D⊥平面AB1C1
(Ⅱ)求二面角B-AB1-C1的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

正三棱锥的相邻两侧面所成的角为α,则α的取值范围(  )
A.(
π
2
,π)
B.(
π
3
,π)
C.(
π
4
π
3
D.(
π
3
π
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-AB-β为120°,AC?α,BD?β,且AC⊥AB,BD⊥AB,AB=AC=BD=a,则CD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

边长为4的正四面体P-ABC中,E为PA的中点,则平面EBC与平面ABC所成锐二面角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面α,β和直线m,给出下列条件:①m∥α;②m⊥α;③m?α;④α⊥β;⑤α∥β.
(1)当满足条件________时,有m∥β;
(2)当满足条件________时,有m⊥β(填所选条件的序号).

查看答案和解析>>

同步练习册答案