精英家教网 > 高中数学 > 题目详情
如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在矩形ABCD的边BC上移动.
(Ⅰ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅱ)当CE等于何值时,二面角P-DE-A的大小为45°.
(I)证明:∵PA⊥平面ABCD,BE?平面ABCD,
∴EB⊥PA,
又∵EB⊥AB,AB∩AP=A,AB,AP?平面PAB,
∴EB⊥平面PAB,
又∵AF?平面PAB,∴AF⊥BE,
又∵PA=AB=1,点F是PB的中点,
∴AF⊥平面PBE.
∵PE?平面PBE,
∴AF⊥PE.
(II)过A作AG⊥DG于G,连PG,
∵DE⊥PA,∴DE⊥平面PAG,则∠PAG是二面角P-DE-A的平面角,
∴∠PGA=45°
∵PD与平面ABCD所成角是30°,
∴∠PDA=30°,
∴AD=
3
,PA=AB=1.
∴AG=1,DG=
2

设BE=x,则GE=x,CE=
3
-x,
在Rt△DCE中,(
2
+x)2=(
3
-x)2+12
得BE=x=
3
-
2

故CE=
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在底面是直角梯形的四棱锥P-ABCD中,ADBC,∠ABC=90°,PA⊥平面ABCD,PA=4.AD=2,AB=2
3
,BC=6.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,PB=
15
,PD=
3

(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,SD⊥AB,且AB=2AD,SD=
3
AD,
(1)求证:平面SDB⊥平面ABCD;
(2)求二面角A-SB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,直三棱柱ABC-A1B1C1的侧棱长为1,底面ABC为直角三角形,AB=AC=1,∠BAC=90°.则二面角B1-AC-B的大小为______;点A到平面BCC1B1的距离等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,矩形ABEF和正方形ABCD有公共边AB,它们所在平面成60°的二面角,AB=CB=2a,BE=a,则DE=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在一个60°的二面角的棱上,有两个点A、B,AC、BD分别是在这个二面角的两个半平面内垂直于AB的线段,且AB=4cm,AC=6cm,BD=8cm,则CD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正方体ABCD-A1B1C1D1中,二面角C1-AB-C的平面角等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.

查看答案和解析>>

同步练习册答案