精英家教网 > 高中数学 > 题目详情
如图,在五面体P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,PB=
15
,PD=
3

(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A的大小.
解(1)由已知AB=4,AD=2,∠BAD=60°,
得BD2=AD2+AB2-2AD•ABcos60°=4+16-2×2×4×
1
2
=12.
∴AB2=AD2+BD2,∴△ABD是直角三角形,
∠ADB=90°,即AD⊥BD.
在△PDB中,PD=
3
,PB=
15
,BD=
12

∴PB2=PD2+BD2,故得PD⊥BD.
又PD∩AD=D,∴BD⊥平面PAD.
(2)∵BD⊥平面PAD,BD?平面ABCD,
∴平面PAD⊥平面ABCD.
作PE⊥AD于E,又PE?平面PAD,∴PE⊥平面ABCD,
∴∠PDE是PD与底面BCD所成的角,∴∠PDE=60°,
∴PE=PDsin60°=
3
3
2
=
3
2

作EF⊥BC于F,连PF,则PF⊥BC,∴∠PFE是二面角P-BC-A的平面角.
又EF=BD=
12
,∴在Rt△PEF中,
tan∠PFE=
PE
EF
=
3
2
2
3
=
3
4

故二面角P-BC-A的大小为arctan
3
4
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图所示,在正方体ABCD-A1B1C1D1中,E为DD1上的点、F为DB的中点.
(Ⅰ)求直线B1F与平面CDD1C1所成角的正弦值;
(Ⅱ)若直线EF平面ABC1D1,试确定点E的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图多面体,它的正视图为直角三角形,侧视图为矩形,俯视图为直角梯形(尺寸如图所示).
(Ⅰ)求证:AE平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为60°?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,四面体A-BCD的四个面全等,且AB=AC=2
3
,BC=4,则以BC为棱,以面BCD与面BCA为面的二面角的大小为(  )
A.arccos
1
3
B.arccos
3
3
C.
π
2
D.
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

平面α与平面β相交成一个锐二面角θ,平面α上的一个圆在平面β上的射影是一个离心率为
1
2
的椭圆,则θ等于(  )
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥P-ABC的两侧面PAB,PBC都是边长为2的正三角形,AC=
3
,则二面角A-PB-C的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在四棱锥P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=1,AB=2,E、F分别是AB、PD的中点.
(Ⅰ)求证:AF平面PEC;
(Ⅱ)求PC与平面ABCD所成角的正弦值;
(Ⅲ)求二面角P-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,PA⊥平面ABCD,四边形ABCD是矩形,PA=AB=1,PD与平面ABCD所成角是30°,点F是PB的中点,点E在矩形ABCD的边BC上移动.
(Ⅰ)证明:无论点E在边BC的何处,都有PE⊥AF;
(Ⅱ)当CE等于何值时,二面角P-DE-A的大小为45°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-AB-β为120°,AC?α,BD?β,且AC⊥AB,BD⊥AB,AB=AC=BD=a,则CD的长为______.

查看答案和解析>>

同步练习册答案