精英家教网 > 高中数学 > 题目详情
三棱锥P-ABC的两侧面PAB,PBC都是边长为2的正三角形,AC=
3
,则二面角A-PB-C的大小为______.
取PB的中点M,连接AM,CM.
则AM⊥PB,CM⊥PB.
故∠AMC为二面角A-PB-C的平面角.
在△AMC中可得AM=CM=
3
,而AC=
3
,则△AMC为正三角形,
∴∠AMC=60°,
∴二面角A-PB-C的大小为60°,
故答案为60°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABC-A1B1C1中,AB⊥侧面BB1C1C,已知BC=1,∠BCC1=
π
3
,AB=CC1=2.
(1)求证:C1B⊥平面ABC;
(2)设E是CC1的中点,求AE和平面ABC1所成角正弦值的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在三棱锥P-ABC中,底面△ABC为等边三角形,∠APC=90°,AC=2PA=4,且平面PAC⊥平面ABC.
(1)求三棱锥P-ABC的体积;
(2)求二面角B-AP-C的余弦值;
(3)判断在线段AC上是否存在点Q,使得△PQB为直角三角形?若存在,找出所有符合要求的点Q,并求
AQ
QC
的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为a的正方形ABCD沿对角线AC折成一个直二面角,则此时BD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在五面体P-ABCD中,底面ABCD是平行四边形,∠BAD=60°,AB=4,AD=2,PB=
15
,PD=
3

(1)求证:BD⊥平面PAD;
(2)若PD与底面ABCD成60°的角,试求二面角P-BC-A的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设一个正三棱锥的侧面与底面所成的角为α,相邻两个侧面所成的角为β,那么两个角α和β的三角函数间的关系是(  )
A.2cos2α+3cosβ=1B.2cosα+3cos2β=1
C.3cos2α+2cosβ=1D.3cosα+2cos2β=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,多面体ABCDS中,面ABCD为矩形,SD⊥AD,SD⊥AB,且AB=2AD,SD=
3
AD,
(1)求证:平面SDB⊥平面ABCD;
(2)求二面角A-SB-D的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,矩形ABEF和正方形ABCD有公共边AB,它们所在平面成60°的二面角,AB=CB=2a,BE=a,则DE=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直四棱柱ABCD-A′B′C′D′,四边形ABCD为正方形,AA′=2AB=2,E为棱CC′的中点.
(Ⅰ)求证:A′E⊥平面BDE;
(Ⅱ)设F为AD中点,G为棱BB′上一点,且BG=
1
4
BB′
,求证:FG平面BDE;
(Ⅲ)在(Ⅱ)的条件下求二面角G-DE-B的余弦值.

查看答案和解析>>

同步练习册答案