| A. | $-\frac{5}{2}$ | B. | $-\frac{9}{2}$ | C. | $-\frac{11}{2}$ | D. | $-\frac{13}{2}$ |
分析 化函数f(x)为正弦型函数,写出f(x)的最小正周期,求得ω的值;
写出f(x),利用$f(θ)=\frac{1}{2}$计算$f({θ+\frac{π}{2}})$的值.
解答 解:函数f(x)=3sinωxcosωx-4cos2ωx
=$\frac{3}{2}$sin2ωx-2(1+cos2ωx)
=$\frac{3}{2}$sin2ωx-2cosωx-2
=$\frac{5}{2}$sin(2ωx-α)-2,其中tanα=-$\frac{4}{3}$;
∴f(x)的最小正周期为T=$\frac{2π}{2ω}$=π,解得ω=1;
∴f(x)=$\frac{5}{2}$sin(2x-α)-2;
又$f(θ)=\frac{1}{2}$,
∴$\frac{5}{2}$sin(2θ-α)-2=$\frac{1}{2}$,
∴sin(2θ-α)=1;
∴$f({θ+\frac{π}{2}})$=$\frac{5}{2}$sin[2(θ+$\frac{π}{2}$)-α]-2
=$\frac{5}{2}$sin(2θ+π-α)-2
=-$\frac{5}{2}$sin(2θ-α)-2
=-$\frac{5}{2}$×1-2=-$\frac{9}{2}$.
故选:B.
点评 本题考查了三角函数的化简与运算问题,也考查了三角函数的图象与性质的应用问题,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 60 | B. | 75 | C. | 90 | D. | 45 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\sqrt{3}$ | C. | 1 | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{5}+1}{2}$ | D. | $\frac{\sqrt{3}+1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 项目 | 半程马拉松 | 10公里健身跑 | 迷你马拉松 |
| 人数 | 2 | 3 | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com