精英家教网 > 高中数学 > 题目详情
9.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是138cm2

分析 根据几何体的三视图得到几何体的结构,进行求解即可.

解答 解:由三视图可知该几何体是个组合体,右侧是一个棱长分别为3,4,6的长方体,
左侧是个平放的三棱柱,三棱柱的高为3,底面直角三角形的两个直角边为3和4,
则长方体的表面积为2×(3×4+3×6+4×6)-3×3=108-9=99,
三棱柱的表面积为3×5+3×4+2×$\frac{1}{2}×4×3$=39,
则几何体的表面积为99+39=138,(cm2
故答案为:138.

点评 本题主要考查空间组合体的表面积的计算,根据条件左侧空间几何体的直观图是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知$\overrightarrow{AB}$=$\overrightarrow a+5\overrightarrow b$,$\overrightarrow{BC}$=$-2\overrightarrow a+8\overrightarrow b$,$\overrightarrow{CD}=3({\overrightarrow a-\overrightarrow b})$,且$\overrightarrow a,\overrightarrow b$不共线,则(  )
A.A.B.D三点共线B.A.B.C三点共线C.B.C.D三点共线D.A.C.D三点共线

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=-$\frac{1}{\sqrt{x}}$,F(x,y)=x2+y2,则F(f($\frac{1}{4}$),1)=(  )
A.-1B.5C.-8D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知二次函数f(x)=ax2+bx+2的导函数的图象如图所示:
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)令$g(x)=\frac{f(x)}{x}$,求y=g(x)在[1,3]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.棱长为2的正四面体ABCD在空间直角坐标系中移动,但保持点A、B分别在x轴、y轴上移动,则棱CD的中点E到坐标原点O的最远距离为(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.$\sqrt{3}$+1D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知曲线y=5$\sqrt{x}$,求:
(1)曲线上与直线y=2x-4平行的切线方程;
(2)求过点P(0,5)且与曲线相切的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.参数方程为$\left\{\begin{array}{l}{x=t+\frac{1}{t}}\\{y=2}\end{array}\right.$(t为参数)表示的曲线是(  )
A.两条射线B.两条直线C.一条射线D.一条直线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=f(x)的导函数f′(x)的图象如图所示,给出下列命题:
①-3是函数y=f(x)的极值点;
②-1是函数y=f(x)的最小值点;
③y=f(x)在区间(-3,1)上单调递增;
④y=f(x)在x=0处切线的斜率小于零.
以上正确命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=ax,则“0<a≤$\frac{1}{4}$”是“对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

同步练习册答案