精英家教网 > 高中数学 > 题目详情
17.已知二次函数f(x)=ax2+bx+2的导函数的图象如图所示:
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)令$g(x)=\frac{f(x)}{x}$,求y=g(x)在[1,3]上的最大值.

分析 (Ⅰ)由已知中,函数f(x)=ax2+bx+2的导函数的图象,求出a,b的值,可得函数f(x)的解析式;
(Ⅱ)$g(x)=\frac{f(x)}{x}$=$x+\frac{2}{x}+1$,则$g′(x)=\frac{(x+\sqrt{2})(x-\sqrt{2})}{{x}^{2}}$,分析导函数在各个区间上的符号,进而可得y=g(x)在[1,3]上的最大值.

解答 解:(Ⅰ)因为函数f(x)=ax2+bx+2
∴f'(x)=2ax+b,
则$\left\{\begin{array}{l}f′(0)=b=1\\ f′(-\frac{1}{2})=-a+b=0\end{array}\right.$
则a=b=1
∴f'(x)=2x+1,
故所求函数解析式为f(x)=x2+x+2.
(Ⅱ)$g(x)=\frac{f(x)}{x}=\frac{{{x^2}+x+2}}{x}=x+\frac{2}{x}+1$,
则$g'(x)=1-\frac{2}{x^2}=\frac{{{x^2}-2}}{x^2}=\frac{{(x+\sqrt{2})(x-\sqrt{2})}}{x^2}$.
当$1≤x<\sqrt{2}$时,g'(x)<0;
当$\sqrt{2}≤x≤3$时,g'(x)>0;
∵g(1)=4,$g(3)=\frac{14}{3}$,
∴g(1)<g(3),
即$g{(x)_{max}}=g(3)=\frac{14}{3}$

点评 本题考查的知识点是二次函数的图象和性质,导数法求函数的最值,熟练掌握二次函数的图象和性质是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知命题p:|x-1|≤2,命题q:-1<x≤3,则命题p是命题q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设P,Q是复平面上的点集,P={z||z-3i|=4},Q={ω|ω=2iz,z∈P}.
(1)P,Q分别表示什么曲线(指出形状、位置、大小)?
(2)设z1∈P,z2∈Q,求|z1-z2|的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若直线x+y=a+1被圆(x-2)2+(y-2)2=4所截得的弦长为2$\sqrt{2}$,则a=(  )
A.1或5B.-1或5C.1或-5D.-1或-5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C的对边分别为a,b,c,已知角C为钝角,且cos(A-C)+cosB=$\frac{3\sqrt{5}}{5}$,c=$\frac{3\sqrt{5}}{5}$a
(1)求角A;
(2)若a=$\sqrt{10}$,D为AC边的中点,求BD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.在△ABC中,角A、B、C的对边分别为a、b、c,且acosC+$\sqrt{3}$asinC-b-c=0
①求角A的大小;
②若a=2,△ABC的面积为$\sqrt{3}$,求b、c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是138cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别是F1,F2,离心率为$\frac{\sqrt{2}}{2}$,过F1且垂直于x轴的直线被椭圆C截得的线段长为$\sqrt{2}$;
(Ⅰ)求椭圆C的方程;
(Ⅱ)若P为椭圆C在第一象限内的任意一点,过点P且斜率为k0的直线与椭圆相切,设PF1,PF2的斜率分别为k1,k2,试证明$\frac{1}{{k}_{0}{k}_{1}}$+$\frac{1}{{k}_{0}{k}_{2}}$为定值,并求出此定值;
(Ⅲ)若直线l:y=kx+m与椭圆C交于不同的两点A、B,且原点O到直线l的距离为1,设$\overrightarrow{OA}$•$\overrightarrow{OB}$=λ,当$\frac{2}{3}$≤λ≤$\frac{3}{4}$时,求△AOB的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.代数式(1-x3)(1+x)10 的展开式中含x3项的系数为(  )
A.72B.90C.119D.120

查看答案和解析>>

同步练习册答案