(12分)已知三棱柱的三视图如图所示,其中正视图和侧视图均为矩形,俯视图中,。
(I)在三棱柱中,求证:;
(II)在三棱柱中,若是底边
的中点,求证:平面;
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.
(1)试判断直线与平面的位置关系,并说明理由;
(2)求平面BDC与平面DEF的夹角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F为DE的中点,求证:BE//平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D^平面PQR;
(2)设二面角B1-PR-Q的大小为q,求|cosq|.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com