精英家教网 > 高中数学 > 题目详情

正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求平面BDC与平面DEF的夹角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
                         

解:(I)如图:在△ABC中,
EF分别是ACBC中点,
EF//AB
AB平面DEFEF平面DEF.         
AB∥平面DEF.              ………………5分
(Ⅱ)以点D为坐标原点,直线DB、DC为x轴、y轴,建立空间直角坐标系,
则A(0,0,2)B(2,0,0)C(0,
平面CDF的法向量为设平面EDF的法向量为
 即


所以平面BDC与平面DEF夹角的余弦值为 
(Ⅲ)在平面坐标系xDy中,直线BC的方程为


所以在线段BC上存在点P,使AP⊥DE  

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图,平面平面是以为斜边的等腰直角三角形,分别为的中点,
(1)设的中点,证明:平面
(2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图,在三棱柱ABC—A1B1C1中,侧面BB1C1C,已知AB=BC=1,BB1=2,,E为CC1的中点。

(1)求证:平面ABC;
(2)求二面角A—B1E—B的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正△ABC的边长为4,CD是AB边上的高,E、F分别是AC和BC边的中点,现将△ABC沿CD翻折成直二面角A—DC—B。
(1)试判断直线AB与平面DEF的位置关系,并说明理由;
(2)求二面角E—DF—C的余弦值;
(3)在线段BC上是否存在一点P,使AP⊥DE?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知三棱柱的三视图如图所示,其中正视图和侧视图均为矩形,俯视图中,
(I)在三棱柱中,求证:
(II)在三棱柱中,若是底边
的中点,求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分12分)如图,在三棱柱中,分别为的中点.
(1)求证:∥平面; (2)求证:平面
(3)直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1
则BM与AN所成的角的余弦值为(  )

A. B. C. D. 

查看答案和解析>>

同步练习册答案