精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,平面平面是以为斜边的等腰直角三角形,分别为的中点,
(1)设的中点,证明:平面
(2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。

证明:(1)见解析;(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等。设细绳的总长为
(1)设∠CA1O =(rad),将y表示成的函数关系式;
(2)请你设计,当角正弦值的大小是多少时,细绳总长最小,并指明此时 BC应为多长。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.

(Ⅰ)证明AB⊥平面VAD;
(Ⅱ)求面VAD与面VDB所成二面角的大小。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)四棱锥的底面是正方形,,点E在棱PB上.若AB=,
(Ⅰ)求证:平面;   
(Ⅱ)若E为PB的中点时,求AE与平面PDB所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE,G是BC的中点.沿EF将梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如图).
(1)当时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
如图,在底面为直角梯形的四棱锥P—ABCD中,
平面
(1)求证:平面PAC;
(2) 求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的中点,求证:平面D1BQ∥平面PAO.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,点在圆上,于点平面

(Ⅰ)证明:
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求平面BDC与平面DEF的夹角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
                         

查看答案和解析>>

同步练习册答案