(本小题满分12分)如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.
(1)设是的中点,证明:平面;
(2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。
科目:高中数学 来源: 题型:解答题
如图所示:一吊灯的下圆环直径为4m,圆心为O,通过细绳悬挂在天花板上,圆环呈水平状态,并且与天花板的距离(即)为2m,在圆环上设置三个等分点A1,A2,A3。点C为上一点(不包含端点O、B),同时点C与点A1,A2,A3,B均用细绳相连接,且细绳CA1,CA2,CA3的长度相等。设细绳的总长为,
(1)设∠CA1O =(rad),将y表示成的函数关系式;
(2)请你设计,当角正弦值的大小是多少时,细绳总长最小,并指明此时 BC应为多长。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥V-ABCD中,底面ABCD是正方形,侧面VAD是正三角形,平面VAD⊥底面ABCD.
(Ⅰ)证明AB⊥平面VAD;
(Ⅱ)求面VAD与面VDB所成二面角的大小。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)四棱锥的底面是正方形,,点E在棱PB上.若AB=,
(Ⅰ)求证:平面;
(Ⅱ)若E为PB的中点时,求AE与平面PDB所成的角的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE,G是BC的中点.沿EF将梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如图).
(1)当时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.
(1)试判断直线与平面的位置关系,并说明理由;
(2)求平面BDC与平面DEF的夹角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com